编辑: 于世美 | 2019-12-23 |
利用支持向量机,神经网络和时间序列等多种不同的预测方法,从不同侧面对电价进行 预测.利用神经网络等模型对预测的历史误差和预测时点的外界影响因素进行分析建模,建立每个模型的可信度评 价模型.采用DS(Dempster-Shafe)证据理论对每个模型的可信度进行分析评价和合成,确立最终的模型组合预测 权值.通过该权值对相应的预测结果进行加权求和得到最终的预测结果.以加州电力市场为例,证明了该方法的有 效性. 关键词: 电价预测 组合预测 证据理论 电力市场 Electricity Price Forecasting Based on Multi-models Combined by Evidential Theory ZENG Ming FENG Yi LIU Da LI Hong-dong LIU Wei Abstract: The combined weights in traditional combined method for electricity forecasting are obtained with calculating the historical forecasting errors, with no considering of the environmental factors. Five models from support vector machine (SVM), artificial neural networks (ANN), and time series forecasting techniques were selected to forecast the electricity price from different views. Four models from ANN and SVM were selected as experts to evaluate the credit of forecasting results of the five above models, with historical forecasting errors and environmental influence. The credit were combined to calculate the weights with Dempster-Shafer (DS) evidential theory. The final forecasting was obtained by the weighted forecasting. The experiment of California power utilities validates the proposed method. Keywords: electricity price forecasting combined forecasting evidential theory electricity market 收稿日期 2007-07-24 修回日期 1900-01-01 网络版发布日期 DOI: 基金项目: 通讯作者: 冯义 作者简介: 作者Email: [email protected] 参考文献: 本刊中的类似文章 1.王高琴 沈炯 李益国.基于聚类和Bayesian推断的市场出清电价离散概率分布预测[J]. 中国电机工程学报, 2007,27(34): 90-95 2.刘达 牛东晓 李媛媛 雷伶俐.基于周期波动及其影响分析的电力市场中长期电价预测[J]. 中国电机工程学报, 2009,29(13): 80-85 Copyright by 中国电机工程学报