编辑: lonven | 2019-06-13 |
粉煤灰采自沈阳热电厂,标记为废渣 H;
金刚石矿渣采至大连瓦房店金刚石矿,标记为废渣 J.将五种废渣风干、研磨,分别过
20 目和
100 目 筛备用.废渣的主要化学成份及其它重金属含量详 见表
2 和表 3(下页) . 由表
3 可知,各种废渣中 Cu、Mn、Pb、Zn 等 重金属的含量较少,且Cr、Cd 等重金属未检出. 参照中华人民共和国农用粉煤灰中污染物控制标 准(GB 8173―87) ,5 种供试废渣适量地应用于农 业生产是安全的. 表1供试土壤的主要理化性质 Table
1 Some properties of the soil used for experiments w(高炉渣 A>
高炉渣 B>
粉煤灰 H>
金刚石矿渣 J;
施用废渣可 以促进水稻植株对硅素养分的吸收,植株含硅量有 随废渣施用量增加而增加的趋势,且施用三种高炉 渣后植株对土壤硅素的利用率明显优于粉煤灰和 金刚石矿渣的施用效果. 总之,施用废渣能使供试土壤的供硅能力得到 显著提高,土壤硅素累积释放量可以比较准确地评 价施用过废渣的土壤的供硅能力,反映废渣硅肥的 有效性.但是不同废渣的作用效果差异较大,而且 测定土壤硅素累积释放量耗时太长,故将其作为废 渣作硅肥的适宜性的评价指标缺乏普遍适用性.哪 些工矿废渣适于作硅肥,如何快速、准确地了解工 矿废渣硅肥的有效性,还有待今后进一步研究. 参考文献: [1] 陈平平. 硅在水稻生活中的作用[J]. 生物学通报, 1998, 33(8): 5-8. CHEN Pingping. Effects of silicon on rice development[J]. Bulletin of Biology, 1998, 33(8): 5-8. [2] 冯东昕, 李宝栋. 可溶性硅在植物抵御病虫害中的作用[J]. 植物病 理学报, 1998, 28(4): 293-297. FENG Dongxin, LI Baodong. The role of soluble silicon in disease management of plant[J]. Acta Phytopathologica Sinica, 1998, 28(4): 293-297. [3] 王荔军, 李敏, 李铁津, 等. 植物体内的纳米结构 SiO2[J]. 科学通 报, 2001, 46(8): 625-632. WANG Lijun, LI Min, LI Tiejin, et al. Nanostructure SiO2 in plant[J]. Chinese Science Bulletin, 2001, 46(8): 625-632. [4] INANAGA S, HIGUCHI Y, CHISHAKI N. Effect of silicon applica- tion on reproductive growth of rice plant[J]. Japanese Journal of Soil Science and Plant Nutrition, 2002, 48(3): 341-345. [5] 毛景东, 杨国治. 粉煤灰资源的农业利用[J]. 农村生态环境学报, 1994, 10(3): 73-75. MAO Jingdong, YANG Guozhi. Uses of coal fly ash on agriculture[J]. Rural Eco-Environment, 1994, 10(3): 73-75. [6] 宋业文, 舒红, 李东雷, 等. 高炉废渣在水稻施用上的利用[J]. 环 境保护, 1999(3): 43-44. SONG Yawen, SHU Hong, LI Donglei, et al. Application of blast fur- nace slag on rice[J]. Environmental Protection, 1999, (3): 43-44. [7] 刘鸣达, 张玉龙, 王耀晶, 等. 施用钢渣对水稻土 pH、水溶态硅动 态及水稻产量影响[J]. 土壤通报, 2002, 33(1): 47-50. LIU Mingda, ZHANG Yulong, WANG Yaojing, et al. Effects of slag application of dynamic changes of pH, water-soluble silicon concen- trations in paddy soil and rice yield[J]. Chinese Journal of Soil Science, 2002, 33(1): 47-50. [8] 加藤直人, 伊森博志, 尾和尚人. kさいケイ酸质肥料の淹水土壤 中における溶解过程[J]. 日本土壤肥料学杂志, 1996, 67(6): 640-647. KATO N, IMORI H, OWA N. The dissolution of calcium silicate slag fertilizers in flooded soil[J]. Japanese Journal of Soil Science and Plant Nutrition, 1996, 67(6): 640-647. [9] NOZOE T, NISHIBATA Y, SEKIGUCHI T, et al. Effects of the Addi- tion of Fe-Containing Slag Fertilizers on the Changes in Eh in Paddy Soil[J]. Japanese Journal of Soil Science and Plant Nutrition, 1999, 45: 729-735. [10] SAIGUSA M, YAMAMOTO A, SHIBUYA K. Change of Structure of Porous Hydrated Calcium Silicate by Dissolution in Paddy Soil[J]. Japanese Journal of Soil Science and Plant Nutrition, 2000, 46: 89-95. [11] YAMAMOTO A, SAIGUSA M, NANZYO M. Chemical and Mor- phological Changes of Porous Hydrated Calcium Silicate in Paddy Soil[J]. Japanese Journal of Soil Science and Plant Nutrition, 2000, 46: 655-660. [12] 劳家柽. 土壤农化分析手册[M]. 北京: 农业出版社, 1988. Lao Jiacheng. Manual of Soil and Agro-chemistry Analysis[M]. Bei- jing: Agriculture Press, 1988. [13] 李学垣. 土壤化学及实验指导[M]. 北京: 农业出版社, 1997: 190. LI Xueyuan. Soil Chemistry and Experiment Guidance[M]. Beijing: Agriculture Press, 1997: 190. [14] 北田敬宇, 龟川健一, 秋山丰. 逐次上澄液法にょる轮换田土壤 ケイ酸の有效化过程解明[J]. 日本土壤肥料学杂志, 1992, 63(1): 31-38. KITADA K, KAMEKAWA K, AKIYAMA Y. The dissolution of sil- ica in soil in rotational paddy fields by the surface water dissolution method[J]. Japanese Journal of Soil Science and Plant Nutrition, 1992, 63(1): 31-38. [15] 马同生, 冯亚军, 梁永超, 等. 江苏沿江地区水稻土硅素供应力与 硅肥施用[J]. 土壤, 1994, 26(3): 154-156. MA Tongsheng, FENG Yajun, LIANG Yongchao, et al. Silicon sup- plying capacity and silicon fertilizer application of paddy soils along Yangtse River in Jiangshu province[J]. Soil, 1994, 26(3): 154-156. Effects of Slag Mucks on improving silicon supplying capacity of paddy soil YANG Dan, ZHANG Yulong, LIU Mingda, YU Na College of Land and Environment, ShenyangAgricultural University//Liaoning Key Laboratory ofAgricultural Resources and Environment, Shenyang 110161, China Abstract: Soil silicon fertility could be improved by the application of silicon fertilizer. Yield, quality and resistance of rice could be enhanced. The silicon fertilizer from industrial slag mucks could have good ecological and environmental benefit. Effect of three slag mucks including blast furnace slag, coal fly ash and diamond slag as silicon fertilizer on silicon supplying capacity of paddy soil was studied by pot experiment and indoor simulation method. Results showed that silicon liberation accumulation amount was increased significantly, which improved the silicon supplying capacity of paddy soil and facilitate the rice silicon availability. The above effect was more obvious in the treatment of blast furnace slag. There was positive logarithm correlation between different application amount of five slag mucks and increase of silicon concentration in plant. The coefficient of a and silicon liberation accumulation amount in