编辑: 匕趟臃39 | 2019-09-16 |
第一章部分习题解答 P.
13 习题 1.2 9.证明:
11 1
1 11
12 1
21 22( )
2 21
2 2
1 1
2 1 j n n n t n j n j n n nn n nj d a t a t a t dt a t a t a t d a t a a t a t a t a t d dt dt a t a t a t d a t a t a t dt = = ∑ " " " " " " # # # # # " " " nn # 证:由(1.2.7)有 左边=
1 2
1 2
1 2 ( )
1 2 ( 1) n n n i i i i i i n i i i d a a a dt τ ? ∑ " " " =
1 2
1 2
1 2
1 2
1 2 ( )
1 2
1 2
1 2 ( 1) n n n n i i i i i i n i i i n i i i n i i i d d a a a a a a a a a dt dt dt τ ? ? ? + + + ? ? ? ? ∑ " " " " " " n d =
1 2
1 2
1 2
1 2
1 2
1 2
1 2
1 2
1 2
1 2
1 2
1 2 ( 1) ( 1) ( 1) n n n n n n n n i i i ii i i i i i i i n i i i n i i i n i i i i i i ii i d d a a a a a a a a a dt dt dt τ τ τ ∑ ∑ ∑ " " " " " " " " " n d " =
11 12
1 11
12 1
11 12
1 21 22( )
2 21 22( )
2 21 22( )
2 1
2 1
2 1
2 n n t n t n t n n nn n n nn n n d d a t a t a t a t a t a t a t a t a t dt dt dt d d a t a a t a t a a t a t a a t dt dt dt d d a t a t a t a t a t a t a t a t dt dt + + + " " " " " " " n n d d " " ) ( nn d a t dt " ) =右边.得证. 有不少同学是这样做的: 左边=
1 2
1 2
1 2 ( )
1 2 ( 1) n n n j j j j j n j j j d a a a dt τ ? ∑ " " " j =
1 2
1 2
1 2
1 2
1 2 ( )
1 2
1 2
1 2 ( 1) n n n n j j j j j nj j j nj j j nj j j j d d a a a a a a a a a dt dt dt τ ? ? ? + + + ? ? ? ? ∑ " " " " " " n d =
11 12
1 11
12 1
11 12
1 21 22( )
2 21 22( )
2 21 22( )
2 1
2 1
2 1
2 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( n n n t n t n t n n n n n nn n n nn d d d a t a t a t a t a t a t a t a t a t dt dt dt d d d a t a a t a t a a t a t a a t dt dt dt d d a t a t a t a t a t a t a t a t dt dt + + + " " " " " " " ) ( nn d a t dt " ) =
11 12
1 1
2 1
1 2 n n i i i i n n nn a t a t a t d d d a t a t a t dt dt dt a t a t a t = ∑ " # # # " # # # " n (*) =右边 (*)=右边这一步应该是没有道理的. P.
21 习题 1.3 4. 求n阶行列式
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1 D ? ? ? ? ? = ? " " # # # # " " 展开后正项的个数. 解:设D展开后正项和负项的项数分别为 P 和N,则1!2n P N n P N D ? + = ? = = 解这个方程组得:
1 !
2 2 n n P ? + = . 9. 题目略. 证明:原式=
5 1
2 3
4 1
8 0
5 18055
8 3
2 8
83283 10000
1000 100
10 6
1 0
4 61042
4 8
5 7
48576 5
7 7
7 57776 C C C C C + + + + 其中第五列元素都能被
23 整除,所以得证. 习题 1.4 3. (1)
1 1
1 1
1 0
0 0
0 0
0 0
0 0
0 ( 1) ( 1) ( 1)
0 0
0 0
0 0
0 0
0 0
0 0
0 n n n n n n n n n x y y y y z x z x z x z x D y xD yz xD x x z z x + + ? ? ? " " " " " # # # # " " " " 这样按第n列展开最方便,不过有不少同学按第n行展开, 虽然也能算得结果,但是过程稍微麻烦一些.
1 n + ? + P.
44 习题 1.6 3(2) 原式=
1 1
2 1
2 2
1 1
1 2
1 1
2 0
1 1
1 1
1 1 ( 1) ( 1)
2 2
0 1
1 1
1 3
1 0
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 0
0 0 ( 1) ( 1)
1 1
1 1
1 0
0 0
2 2
1 1
1 1
1 n n n n n i i n n n n R R n R R n n n n n C C R R n n n n n n n n n n ? ? ? = ? ? ? ? ? ? ? ? + + + ? ? ? ? ? ? ? + + = = ∑ " " " " " " " " " " " " " "
1 1
1 2
0 0
0 ( 1) ( 1) ( 1)( 1) ( 1)
2 2 n n n n n n n n n n n n n ? ? ? ? + + " % P.45, 5. 设11
12 13
1 1
2 0
0 .
1 0
3 0
1 0
0 n a a a a D n = " " " # # # # " 求 其中 是 的代数余子式 (
1 11
12 1 . n A A A + + + " 1i A 1i a ,2, , ) i n . = " 解:
11 12
1 1
2 1
1 1
1 1
2 0
0 1
0 3
0 1
0 0
1 1
1 1
1 2
0 2
0 ( 1/ 2) ( 1/ )
0 0
3 0
0 0
1 1 (1 ) !
2 n n A A A n n C C n C n n n + + + = ? ? ? = ? ? ? " " " " # # # # " " " " " " # # # " "
1 0
0 #