编辑: 贾雷坪皮 | 2019-07-14 |
1 10
100 1000 0.1
1 10
100 1000 Ta=25?C Single Pulse PW = 100ms PW = 1ms PW = 10ms Operation in this area is limited by RDS(on) Fig.1 Power Dissipation Derating Curve Fig.3 Normalized Transient Thermal Resistance vs. Pulse Width Power Dissipation : P D /P D max. [%] Junction Temperature : Tj [°C] Normalized Transient Thermal Resistance : r (t) Pulse Width : PW [s] Fig.2 Maximum Safe Operating Area Drain Current : I D [A] Drain - Source Voltage : VDS [V] 4/12 2013.04 - Rev.A RCX450N20 lElectrical characteristic curves Junction Temperature : Tj [°C]
1 10
100 0.01 0.1
1 10
100 VDD=50V,RG=25W VGF=10V,VGR=0V Starting Tch=25?C
0 20
40 60
80 100
120 0
25 50
75 100
125 150
175 0
5 10
15 20
0 0.2 0.4 0.6 0.8
1 Ta=25?C Pulsed VGS=5.5V VGS=6.5V VGS=10.0V VGS=7.0V VGS=8.0V VGS=6.0V
0 5
10 15
20 25
30 35
40 45
0 2
4 6
8 10 Ta=25?C Pulsed VGS=6.5V VGS=10.0V VGS=7.0V VGS=8.0V VGS=6.0V Fig.6 Typical Output Characteristics(I) Drain Current : I D [A] Drain - Source Voltage : VDS [V] Fig.7 Typical Output Characteristics(II) Drain Current : I D [A] Drain - Source Voltage : VDS [V] Fig.4 Avalanche Current vs Inductive Load Avalanche Current : I AS [A] Coil Inductance : L [mH] Fig.5 Avalanche Energy Derating Curve vs Junction Temperature Avalanche Energy : E AS / E AS max. [%] 5/12 2013.04 - Rev.A RCX450N20 lElectrical characteristic curves
180 190
200 210
220 230
240 250
260 270
280 -50 -25
0 25
50 75
100 125
150 VGS = 0V ID = 1mA 0.001 0.01 0.1
1 10
100 0
2 4
6 8
10 VDS= 10V Ta= 125?C Ta= 75?C Ta= 25?C Ta= -25?C 2.5 3.0 3.5 4.0 4.5 5.0 -50 -25
0 25
50 75
100 125
150 VDS = 10V ID = 1mA 0.01 0.1
1 10
100 0.01 0.1
1 10
100 VDS= 10V Ta= -25?C Ta=25?C Ta=75?C Ta=125?C Fig.10 Gate Threshold Voltage vs. Junction Temperature Gate Threshold Voltage : V GS(th) [V] Junction Temperature : Tj [°C] Fig.11 Transconductance vs. Drain Current Transconductance : g fs [S] Drain Current : ID [A] Fig.8 Breakdown Voltage vs. Junction Temperature Junction Temperature : Tj [°C] Fig.9 Typical Transfer Characteristics Gate - Source Voltage : VGS [V] Drain Current : I D [A] Normarize Drain - Source Breakdown Voltage : V (BR)DSS [V] 6/12 2013.04 - Rev.A RCX450N20 lElectrical characteristic curves
30 40
50 60
70 80
90 100
0 5
10 15
20 Ta=25?C ID = 22.5A ID = 45A
1 10
100 1000 0.01 0.1
1 10
100 Ta=25?C VGS = 10V
0 20
40 60
80 100 -50 -25
0 25
50 75
100 125
150 VGS = 10V ID = 5A Fig.13 Static Drain - Source On - State Resistance vs. Drain Current(I) Static Drain - Source On-State Resistance : R DS(on) [m W ] Junction Temperature : Tj [?C] Fig.14 Static Drain - Source On - State Resistance vs. Junction Temperature Static Drain - Source On-State Resistance : R DS(on) [m W ] Drain Current : ID [A] Fig.12 Static Drain - Source On - State Resistance vs. Gate Source Voltage Static Drain - Source On-State Resistance : R DS(on) [m W ] Gate - Source Voltage : VGS [V] 7/12 2013.04 - Rev.A RCX450N20 lElectrical characteristic curves
0 20
40 60
80 100
120 0
25 50
75 100
125 150
175 1
10 100
1000 0.01 0.1
1 10
100 Ta=125?C Ta=75?C Ta=25?C Ta= -25?C VGS= 10V Fig.15 Static Drain - Source On - State Resistance vs. Drain Current(I) Static Drain - Source On-State Resistance : R DS(on) [m W ] Drain Current : ID [A] Fig.16 Drain Current Derating Curve Drain Current Dissipation : I D /I D max. (%) Junction Temperature : Tj [?C] 8/12 2013.04 - Rev.A RCX450N20 lElectrical characteristic curves