编辑: 丶蓶一 2015-02-02
收稿日期 :2007201205 ;

修改稿收到日期 :20082042161 基金项目 :国家自然科学基金(50778043) ;

福建省教育厅 科技项目(J A07014) 资助项目1 作者简介 :韦建刚

3 (19712) ,男 ,博士 ,副研究员 ( E2mail :weijg @fzu.

edu. cn) ;

陈宝春(19582) ,男 ,博士 ,教授 ,博士生导师 ;

吴庆雄(19732) ,男 ,博士 ,副研究员. 第26卷第1期2009 年2月计算力学学报Chinese Journal of Computational Mechanics Vol .

26 ,No .

1 February

2009 文章编号 :100724708 (2009)

0120087207 压弯钢管拱极限承载力计算的等效梁柱法 韦建刚3 , 陈宝春 , 吴庆雄 (福州大学 土木工程学院 ,福州 350108) 摘要:对抛物线完善的和具有初始几何缺陷的钢管拱 ,应用双重非线性有限元方法 ,分析了其在拱顶集中力和 非对称分布荷载作用下的失稳特性 ,提出了以 GB5001722003 的轴力2弯矩相关方程为基本计算公式、 采用考虑 矢跨比因素的稳定系数和缺陷折减系数的等效梁柱法 ,与双重非线性有限元计算结果比较表明 ,这种等效梁柱 法可方便且较精确地计算抛物线压弯钢管拱的极限承载力. 关键词 :钢管拱 ;

压弯 ;

极限承载力 ;

等效梁柱法 ;

初始几何缺陷 ;

双重非线性 中图分类号 : TU31112 文献标识码 :A

1 引言抛物线拱在均布荷载作用下 ,在不计拱轴线压 缩的影响时 ,截面上仅存在轴力 ,为纯压拱 ;

而在非 均布荷载作用时 ,截面上同时存在轴力与弯矩的作 用 ,为压弯拱[1 ] .为了预估考虑几何和材料非线性 后的压弯拱的非线性临界荷载 ,常采用概念清晰、 形式简单的等效梁柱法[2 ] .所谓等效梁柱法 ,是将 压弯拱等效成偏压柱 ,然后利用偏压构件的弯矩2 轴力相关公式求得相应拱截面的内力 ,最后利用外 力与内力的关系反算拱的非线性临界荷载[3 ] .文献[4 ]针对非对称分布荷载下的钢拱提出了较为复 杂的轴力2弯矩相关方程式 ;

文献[5 ,6 ]提出了以退 化系数和修正的轴力2弯矩相关方程的计算公式 ;

文献[3 ]提出了将拱等效成偏压柱后 ,采用规范规 定的偏压柱的轴力2弯矩相关公式进行计算的方 法 ,分析结果表明这种方法估算的极限荷载的变化 规律与有限元计算结果的规律相同 ,但对于不同荷 载工况和不同结构参数情况下两者的差值并不完 全相同 ,说明它还不能很准确地反映管拱的曲线几 何特性和结构受力特性. 为了更准确地预测管拱的极限承载力 , 文献 [7 ] 重新回到纯压钢管拱 ,分析发现用等效柱法计 算其非线性临界荷载时 ,不能直接采用柱的稳定系 数 ,在稳定系数中还应该考虑拱的矢跨比和初始几 何缺陷的影响. 为此 , 在现有的等效柱法中引入了 考虑矢跨比因素的稳定系数 K1 和考虑初始几何缺 陷的折减系数 K2 . 本文将文献[7 ] 的研究成果推广至抛物线钢 管压弯拱 ,在运用考虑双重非线性有限元分析的基 础上 ,分析了压弯拱的失稳形式和极限承载力 , 提 出了以 GB5001722003[8] 的轴力 2弯矩相关方程为 基本计算公式、 采用考虑矢跨比因素的稳定系数和 缺陷折减系数的等效梁柱法 ,并通过算例分析了这 种方法的计算精度.

2 计算参数 设抛物线无铰拱的跨径为 L , 矢高为 f , 拱肋 钢管直径为 D ,壁厚为 t ,长细比为 L/ rx ( rx 为断面 二次半径 , rx = I/ A , Is 为断面二次惯矩 , As 为断 面积) . 钢材弹性模量 Es ,屈服强度 f s . 拱的计算参 数范围 :长细比 L/ rx =

下载(注:源文件不在本站服务器,都将跳转到源网站下载)
备用下载
发帖评论
相关话题
发布一个新话题