编辑: 王子梦丶 | 2015-02-02 |
2 岩土力学Vol.
31 Supp.2
2010 年11 月Rock and Soil Mechanics Nov.
2010 收稿日期:2010-11-27 基金项目:973 项目(No. 2010CB732006)资助. 第一作者简介:李占海,男,1980 年生,博士研究生,主要从事隧道开挖损伤理论与现场监测方面的研究工作.E-mail: [email protected] 文章编号:1000-7598 (2010)增刊 2-0434-09 侧压力系数对马蹄形隧道损伤破坏的影响研究 李占海
1 ,朱万成
1 ,冯夏庭 1,
2 ,李绍军
2 ,周辉2,陈炳瑞
2 (1. 东北大学 资源与土木工程学院,沈阳,110004;
2. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,武汉
430071 ) 摘要:数值模拟研究了马蹄形隧道在不同载荷下从围岩初始损伤至失稳破坏的破坏过程,分析了侧压力系数 λ 对隧道的初 始损伤、拱顶位移、围岩应力分布特征和围岩损伤破坏模式的影响,研究结果表明,损伤机制与 λ 密切相关,当λ较小时, 在空间上初始损伤分布具有较大的离散性,以拱脚、拱肩和拱顶位置为主;
当λ较大时,初始损伤以拱顶的拉伸损伤位置为 主;
拱顶垂直方向的位移随 λ 的增大而减小,且随埋深的增加而增大;
隧道围岩的最大和最小主应力随 λ 的增大而增大,隧 道围岩应力分布和应力集中程度受隧道形状的影响显著,在一定范围内,隧道形状比离自由面的距离作用机制更为强烈;
在 破裂模式上,当λ较小时,裂纹以垂直方向开裂为主,随着 λ 的增大转变为以水平方向开裂为主. 关键词:马蹄形隧道;
侧压力系数;
损伤破坏;
稳定性;
数值模拟 中图分类号:TU
443 文献标识码:A Effect of lateral pressure coefficients on damage and failure process of horseshoe-shaped tunnel LI Zhan-hai
1 ,ZHU Wan-cheng
1 ,FENG Xia-ting 1,
2 ,LI Shao-jun
2 ,ZHOU Hui
2 ,CHEN Bing-rui
2 (1. School of Resources and Civil Engineering, Northeastern University, Shenyang 110004, China;
2. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China) Abstract: The failure process of horseshoe-shaped tunnel under different lateral pressure coefficients is numerically simulated, based on which, the effect of the lateral pressure coefficient on the initiator damage, displacement at roof, stress distribution, and the failure modes around the tunnel are examined. The numerical results indicate: Damage mechanism is mainly controlled by the lateral pressure coefficient λ , i.e. when λ ≤1, the position of damage initiation is largely discrete, especially at arch foot, spandrel and tunnel roof;
when λ >
1, however, spandrel is seriously damaged, vertical displacement of vault increases with the decreasing λ and increasing depth. The stress σ1 and σ3 increase with λ , even though the stress concentration at different parts of tunnel is quite different. Within a certain distance, the mechanism of the tunnel shape has more intensive influences than the distance from free tunnel perimeter. For the failure mode, when λ is relatively small, the main cracks spread in the vertical direction, while with the increase of λ , cracks gradually spread in the horizontal direction. Key words: horseshoe-shaped tunnel;
lateral pressure coefficient;
damage;
stability;
numerical simulation
1 引言围岩的初始应力场包括自重应力场和构造应 力场.自然界中有的地方以自重应力场为主,有的 地方以构造应力场为主,二者的变化规律是不同 的[1] .随着埋深的增加,由岩体自重引起的垂直应 力和水平应力均相应增大,在高地应力作用下,围 岩可以出现大变形、 片帮、 底鼓及岩爆等地质灾害, 其稳定性与安全问题变得十分突出,从岩石力学角 度讲,大深度开挖诱发的一个突出问题就是岩爆, 而岩爆的发生与地应力的集聚及开挖引起的二次 应力分布特征密切相关[2C3] .由于地应力和地质构 造的改变,导致隧道围岩侧压力系数 λ 的不同,从 而岩体能量的积累与释放方式也随之发生变化,成 为频频出现的塌方和衬砌变形过大等事故的诱因 之一.因此,对于不同 λ 作用下的围岩的应力状态 增刊