编辑: 迷音桑 2013-05-07
晌图训握 文档下载 免费文档下载 https://www.

51wendang.com/ 本文档下载自文档下载网,内容可能不完整,您可以点击以下网址继续阅读或下载: http://www.51wendang.com/doc/e337010eeabb314e1d59d079 生物统计学

第五章

第五章统计推断 .1 统计假设有哪几种?它们的含义是什么? 答:有零假设和备择假设.零假设:假设抽出样本的那个总体之某个参数(如平均数)等于某一给定的值.备择假设:在拒绝零假设后可供选择的假设. .2小概率原理的含义是什么?它在统计假设检验中起什么作用? 答:小概率的事件,在一次试验中,几乎是不会发生的.若根据一定的假设条件,计算出来该事件发生的概率很小,而在一次试验中,它竟然发生了,则可以认为假设的条件不正确,从而否定假设. 小概率原理是显著性检验的基础,或者说显著性检验是在小概率原理的基础上建立起来的. .3什么情况下用双侧检验?什么情况下可用单侧检验?两种检验比较,哪一种检验的效率更高?为什么? 答:以总体平均数为例,在已知μ不可能小于μ0时,则备择假设为HA:μ>

μ0,这时为上尾单侧检验.在已知μ不可能大于μ0时,则备择假设为HA:μ<

μ0,这时为下尾单侧检验.在没有关于μ不可能小于μ0或μ不可能大于μ0的任何信息的情况下,其备择假设为HA:μ≠μ0,这时为双侧检验. 两种检验比较,单侧检验效率更高,因为在单侧检验时,有一侧的信息是已知的,信息量大于双侧检验,因此效率高于双侧检验. .4显著性水平是一个指数还是一个特定的概率值?它与小概率原理有什么关系?常用的显著水平有哪几个? 答:显著性水平是一个特定的概率值.在小概率原理的叙述中提到 若根据一定的假设条件,计算出来该事件发生的概率很小 ,概率很小要有一个标准,这个标准就是显著水平.常用的显著水平有两个,5%和1%. .5为什么会产生I型错误?为什么会产生II型错误?两者的关系是什么?为了同时减少犯两种错误的概率,应采取什么措施? 答:在H0是真实的情况下,由于随机性,仍有一部分样本落在拒绝域内,这时将拒绝H0,但这样的拒绝是错误的.即,如果假设是正确的,却错误地据绝了它,这时所犯的错误称为I型错误. 当μ≠μ0,而等于其它的值(μ1)时,样本也有可能落在接受域内.当事实上μ≠μ0,但错误地接受了μ=μ0的假设,这时所犯的错误称为II型错误.://www.51wendang.com/doc/e337010eeabb314e1d59d079r 为了同时减少犯两种错误的概率,应当增加样本含量. .6统计推断的结论是接受H0,接受零假设是不是表明零假设一定是正确的?为什么? 接受零假设 的正确表述应当是什么? 答:统计推断是由样本统计量推断总体参数,推断的正确性是与样本的含量有关的.以对平均数的推断为例,当样本含量较少时,标准化的样本平均数u值较小,很容易落在接受域内,一旦落在接受域内,所得结论将是接受H0.如果抽出样本的总体参数μ确实不等于μ0,当增加样本含量之后,这种差异总能被检验出来.因此接受H0并不表明H0一定是正确的. 接受H0的正确表述应当是:尚无足够的理由拒绝H0.尚无足够的理由拒绝 并不等于接受H0. .7配对比较法与成组比较法有何不同?在什么情况下使用配对法?如果按成组法设计的实验,能不能把实验材料随机配对,而按配对法计算,为什么? 答:配对比较法:将独立获得的若干份实验材料各分成两部分或独立获得的若干对遗传上基本同质的个体,分别接受两种不同的处理;

下载(注:源文件不在本站服务器,都将跳转到源网站下载)
备用下载
发帖评论
相关话题
发布一个新话题