编辑: 喜太狼911 | 2015-07-19 |
知道功是能量转化的量度,掌握重力的功、弹力的功、合力的功与对应的能量转化关系.2.知道自然界中的能量转化,理解能量守恒定律,并能用来分析有关问题. 考点一 功能关系的应用 几种常见的功能关系及其表达式 力做功 能的变化 定量关系 合力的功 动能变化 W合=Ek2-Ek1=ΔEk 重力的功 重力势能变化 (1)重力做正功,重力势能减少 (2)重力做负功,重力势能增加 (3)WG=-ΔEp=Ep1-Ep2 弹簧弹力的功 弹性势能变化 (1)弹力做正功,弹性势能减少 (2)弹力做负功,弹性势能增加 (3)WF=-ΔEp=Ep1-Ep2 只有重力、弹簧弹力做功 机械能不变化 机械能守恒ΔE=0 除重力和弹簧弹力之外的其他力做的功 机械能变化 (1)其他力做多少正功,物体的机械能就增加多少 (2)其他力做多少负功,物体的机械能就减少多少 (3)W其他=ΔE 一对相互作用的滑动摩擦力的总功 机械能减少 内能增加 (1)作用于系统的一对滑动摩擦力一定做负功,系统内能增加 (2)摩擦生热Q=Ff・x相对 1.[功能关系的应用]自然现象中蕴藏着许多物理知识,如图所示为一个盛水袋,某人从侧面缓慢推袋壁使它变形,则水的势能( ) A.变大 B.变小 C.不变 D.不能确定 2.[功能关系的应用](多选)如图所示,一固定斜面倾角为30°,一质量为m的小物块自斜面底端以一定的初速度沿斜面向上做匀减速运动,加速度大小等于重力加速度的大小g.物块上升的最大高度为H,则此过程中,物块的( ) A.动能损失了2mgH B.动能损失了mgH C.机械能损失了mgH D.机械能损失了