编辑: 我不是阿L | 2014-04-29 |
一、选择题 1.
(2016・黑龙江大庆)一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为( ) A. B. C. D. 【考点】列表法与树状图法. 【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与取到的是一个红球、一个白球的情况,再利用概率公式求解即可求得答案. 【解答】解:画树状图得: ∵共有20种等可能的结果,取到的是一个红球、一个白球的有12种情况, ∴取到的是一个红球、一个白球的概率为: =. 故选C. 【点评】此题考查了列表法或树状图法求概率.注意此题是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比. 2. (2016・新疆)小球在如图所示的地板上自由滚动,并随机停留在某块正方形的地砖上,则它停在白色地砖上的概率是 . 【考点】几何概率. 【分析】先求出瓷砖的总数,再求出白色瓷砖的个数,利用概率公式即可得出结论. 【解答】解:∵由图可知,共有5块瓷砖,白色的有3块, ∴它停在白色地砖上的概率=. 故答案为:. 【点评】本题考查的是几何概率,熟记概率公式是解答此题的关键. 3. (2016・四川乐山・3分)现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字、、、、、.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为的概率是 答案:C 解析:投掷这两枚骰子,所有可能共有36种,其中点数之和为9的有(3,6),(4,5),(5,4),(6,3)共4种,所以,所求概率为:. 4. (2016,湖北宜昌,6,3分)在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法估算正面朝上的概率,其实验次数分别为10次、50次、100次,200次,其中实验相对科学的是( ) A.甲组 B.乙组 C.丙组 D.丁组 【考点】模拟实验. 【分析】大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值. 【解答】解:根据模拟实验的定义可知,实验相对科学的是次数最多的丁组. 故选:D. 【点评】考查了模拟实验,选择和抛硬币类似的条件的试验验证抛硬币实验的概率,是一种常用的模拟试验的方法. 5.(2016・广东广州)某个密码锁的密码由三个数字组成,每个数字都是0-9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同,才能将锁打开,如果仅忘记了所设密码的最后那个数字,那么一次就能打开该密码的概率是( ) A、B、C、D、 [难易] 较易 [考点] 概率问题 [解析] 根据题意可知有10种等可能的结果,满足要求的可能只有1种, 所以P(一次就能打该密码)= [参考答案] A 6.(2016・广东深圳)数学老师将全班分成7个小组开展小组合作学习,采用随机抽签法确定一个小组进行展示活动.则第3小组被抽到的概率是( ) A.B.C.D. 答案:A 考点:考查概率的求法. 解析:共7个小组,第3小组是1个小组,所以,概率为 7.(2016・广西贺州)从分别标有数3,2,1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的概率是( ) A. B. C. D. 【考点】概率公式;
绝对值. 【分析】由标有数3,2,1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的有4种情况,直接利用概率公式求解即可求得答案. 【解答】解:∵标有数3,2,1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的有4种情况, ∴随机抽取一张,所抽卡片上的数的绝对值不小于2的概率是:. 故选D. 【点评】此题考查了概率公式的应用.注意找到绝对值不小于2的个数是关键. 【点评】考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比. 8. (2016年浙江省台州市)质地均匀的骰子六个面分别刻有1到6的点数,掷两次骰子,得到向上一面的两个点数,则下列事件中,发生可能性最大的是( ) A.点数都是偶数 B.点数的和为奇数 C.点数的和小于13 D.点数的和小于2 【考点】列表法与树状图法;