编辑: xiaoshou 2019-07-07

8 periods 1. Christoffel symbol, covariant derivative, derivative to axis of tensor and high-order derivative 2. gradient, divergence and curl of tensor 3. orthorhombic curvilinear coordinate system 4. integral theorem( Stokes divergence theorem and Gauss theorem) 5. Dimensionless nature coordinate system and physical components, physical components in orthorhombic curvilinear coordinate system geometry of curved surface

6 periods 1.Gauss coordinate of curved surface 2. The first and second fundamental forms of a curved surface;

derivative of the unity vector in the normal direction and derivatives of the base vector on curved surface. 3. Covariant derivative on curved surface, Godazzi equation, Gauss equation, Riemann-Christoffel tensor tensor in Cartesian coordinate system

4 periods 1. tensor in Cartesian coordinate system, standard orthogonal base. 2. matrix expression, characteristic values, characteristic directions and invariants of second-order tensor, 3. characteristics of second-order symmetric tensor, characteristics of second-order anti-symmetric tensor Talking about the course(Discussion)2 peirods

四、预备知识或先修课程要求 矢量代数,线性代数,微积分

五、教学目的与要求(不少于200字) 理解张量的引入,是力图既采用坐标系又摆脱具体坐标系影响的一种尝试.深刻理解到使用张量,可以简化推导,使演算过程清晰,表达整齐统一,用张量描述的自然科学中一些规律在任何坐标系下具有不变的形式,这将给研究工作带来极大的方便.熟练掌握张量分析的基本内容,包括空间曲线坐标系,张量的基本概念和代数运算,二阶张量,张量场论以及曲面上的张量,笛卡尔坐标系对应的笛卡尔张量.能在自己的专业的学习和研究中识别和熟练使用张量分析这一工具.

六、教材或讲义 教材:《张量分析教程》,张若京编,2004年,同济大学出版社;

七、参考书目 参考书:《张量分析及应用》,余天庆,毛为民 编著,2006年,科学出版社;

《张量分析及其应用》,李开泰,黄艾香 著,2004年,清华大学出版社;

《张量分析与连续介质力学》,弗留盖,1980年,中国建筑工业出版社.

八、教学日历(授课内容详细至二级标题,实验课、讨论课写出题目或主题) 周次 教学内容(包括课堂讲授、实验、讨论、考试等) 备注

1 斜角直线坐标,曲线坐标的基矢量,坐标变换,张量及张量的实体表示,度量张量,对偶基矢量

2 矢量的叉积、混合积和Eddington张量,Ricci符号和行列式,张量的代数运算

3 映射量,正则与蜕化,特征方向和不变量, Cayley-Hamilton定理,几种特殊的映射量

4 对称映射量的特征方向,对称映射量的主值和主方向及映射量的分解,克里斯托夫(Christoffel)符号,协变导数

5 张量对坐标的导数,高阶导数,梯度,散度和旋度,正交曲线坐标系,积分定理(斯托克斯散度定理和高斯定理)

6 无量纲自然基标架和物理分量,正交曲线坐标系下的物理分量, 曲面上的高斯(Gauss)坐标, 曲面的第一基本(二次)型,曲面的第二基本(二次)型,曲面上的单位法向矢量与基矢量的导数

7 曲面内协变导数,柯达兹公式,高斯公式,黎曼-克里斯托夫张量,关于笛于尔张量,标准正交基,

8 二阶张量的矩阵表达法,二阶张量的特征值,特征方向和不变量二阶对称张量的性质,二阶反对称张量的性质课程学习体会(讨论)

九、备注 ........

下载(注:源文件不在本站服务器,都将跳转到源网站下载)
备用下载
发帖评论
相关话题
发布一个新话题