编辑: 戴静菡 2019-07-10

二、多次付息 单利付息情形 因每次的利息都不计入本金, 故若一年分次付息, 则年末的本利和为 即年末的本利和与支付利息的次数无关. 复利付息情形 因每次支付的利息都记入本金, 故年末的本利和与支付利息的次数是有关系的. 设初始本金为(元), 银行年利率为,若一年分次付息, 则一年末的本利和为 易见本利和是随付息次数的增大而增加的. 而第年末的本利和为 .

三、贴现 票据的持有人, 为在票据到期以前获得资金, 从票面金额中扣除未到期期间的利息后, 得到所余金额的现金称为贴现. 钱存在银行里可以获得利息, 如果不考虑贬值因素, 那么若干年后的本利和就高于本金. 如果考虑贬值的因素, 则在若干年后使用的未来值(相当于本利和)就有一个较低的现值. 考虑更一般的问题: 确定第年后价值为元钱的现值.假设在这年之间复利年利率不变. 利用复利计算公式有 , 得到第年后价值为元钱的现值为 , 式中表示第年后到期的票据金额, 表示贴现率, 而表示现在进行票据转让时银行付给的贴现金额. 若票据持有者手中持有若干张不同期限及不同面额的票据, 且每张票据的贴现率都是相同的, 则一次性向银行转让票据而得到的现金 式中为已到期的票据金额, 为年后到期的票据 金额. 称为贴现因子,它表示在贴现率下年后到 期的1元钱的贴现值. 由它可给出不同年限及不同贴现率下的贴现因子表.

四、需求函数 需求函数是指在某一特定时期内, 市场上某种商品的各种可能的购买量和决定这些购买量的诸因素之间的数量关系.假定其它因素(如消费者的货币收入、偏好和相关商品的价格等)不变, 则决定某种商品需求量的因素就是这种商品的价格. 此时, 需求函数表示的就是商品需求量和价格这两个经济量之间的数量关系 其中,表示需求量, 表示价格.需求函数的反函数称为价格函数, 习惯上将价格函数也统称为需求函数.

五、供给函数 供给函数是指在某一特定时期内, 市场上某种商品的各种可能的供给量和决定这些供给量的诸因素之间的数量关系.

六、市场均衡 对一种商品而言, 如果需求量等于供给量,则这种商品就达到了市场均衡. 以线性需求函数和线性供给函数为例, 令 这个价格称为该商品的市场均衡价格. 市场均衡价格就是需求函数和供给函数两条曲线的交点的横坐标. 当市场价格高于均衡价格时, 将出现供过于求的现象, 而当市场价格低于均衡价格时,将出现供不应求的现象. 当市场均衡时有 图示 称为市场均衡数量. 根据市场的不同情况,需求函数与供给函数还有二次函数、多项式函数与指数函数等. 但其基本规律是相同的, 都可找到相应的市场均衡点(,).

七、成本函数 产品成本是以货币形式表现的企业生产和销售产品的全部费用支出, 成本函数表示费用总额与产量(或销售量)之间的依赖关系, 产品成本可分为固定成本和变动成本两部分. 所谓固定成本, 是指在一定时期内不随产量变化的那部分成本;

所谓变动成本, 是指随产量变化而变化的那部分成本. 一般地, 以货币计值的(总)成本是产量的函数, 即 称其为成本函数. 当产量时, 对应的成本函数值就是产品的固定成本值. 设为成本函数, 称为单位成本函数或平均成本函数. 成本函数是单调增加函数, 其图象称为成本曲线.

下载(注:源文件不在本站服务器,都将跳转到源网站下载)
备用下载
发帖评论
相关话题
发布一个新话题