编辑: lqwzrs 2018-09-23

当温度改变到 0?C 时,开始有冰产生(产生新相);

当温度改变到 100?C 时,将有蒸汽相产生(产生新相). 同理,在一定温度下,水的压力不能小于该温度时水的饱和蒸汽压,否则将转化成蒸汽相. 所以体系的自由度可以理解为:在保持体系相数不变条件下,可任意改变的独立变量数. 例如:水在保持单一液相条件下 f =

2 (压力、温度)而水在保持:汽?? 液 两相平衡条件下,独立变量数为 f =

1 (压力或温度)∵若温度一定,只有 P = PH2O* 时,才有汽液两相平衡,∴ f =1) §5.2 相律及其热力学推导

一、 相律 的完整表述在平衡体系中,联系体系内相数、组分数、自由度及影响物质性质的外界因素 (如温度、压力、重力场、磁场、表面能等)之间关系的规律为相律:f = C ? ? + n 在不考虑重力场、电场?等外界因素,只考虑温度和压力的影响时,平衡体系的相律为:f = C ? ? +

2 f :体系的自由度数;

C:独立组分数;

? :相数;

2 :温度和压力两个变量. 由相律公式可以看出:体系每增加

1 个组分,自由度也要增加 1;

体系每增加

1 个相,自由度则要减小 1.这些基本现象和规律早就为人们所公认,但直到1876年,才由吉布斯(Gibbs)推导出上述简洁而有普遍意义的形式. f = C ? ? +

2

二、相律推导 命题:一平衡体系中有 C 个独立组分,? 个相,求体系的自由度 f . 1)假设这 C 个组分在每个相中均存在,或者说在这 ? 个相中,每个相均有 C 个组分;

对于其中任意一个相,只要任意指定 (C?1) 个组分的浓度,该相的浓度就确 定了;

因为剩下的第 C 个 (最后一个) 组分的浓度也已确定.现在共有 ? 个相,所以需要指定:? (C?1) 个浓度,才能确定体系中各个相的浓度. 热力学平衡时,各相的温度和压力均相同,故整个体系只能再加(温度、压力)两个变量.因此,确定体系所处的状态所需的变量数应为:f = ? (C?1) +

2 … ①但是,这些变量彼此并非完全独立. 因为在多相平衡时,还必须满足: 任一组分在各个相中的化学势均相等 这样一个热力学条件,即对组分 i 来说,有:?i? = ?i? = … = ?i? 共有 (? ?1) 个等号.现在有 C 个组分,所以总共有 C (? ?1) 个化学势相等的关系式. 要确定体系的状态所需的独立变量数,应在上述 ① 式中再减去 C (? ?1) 个变量 数(化学势等号数),即为体系真正的独立变量数 (自由度)f = ? (C?1) +

2 ? C (? ?1)C ? ? +

2 … ②这就是相律的数学表达式. f = ? (C?1) +

2 … ① 2)上面的推导中我们假设了:任意组分在每一相中均存在,或:每个相均有 C 个组分;

这一假设似乎有失一般性. 例如:以NaCl + H2O 的(溶液相 ? 蒸汽相)体系来说,很难想象蒸气相中也有 NaCl 蒸气的存在(尽管理论上并不排斥这一点);

即使有 NaCl 蒸气的存在,其实际存在的数量也小到了失去其热力学的意义;

但这并不妨碍公式 ②的正确性.f = C ? ? +

2 … ②因为若在某一相中少了一个组分(比........

下载(注:源文件不在本站服务器,都将跳转到源网站下载)
备用下载
发帖评论
相关话题
发布一个新话题