编辑: glay | 2019-07-18 |
(3)如图⑤,∵BD⊥AC,∴∠BDC = ∠ADB = 90°,在RtBCD中,M是BC的中点, ∴DM =BC,∵EM = DM,∴EM =BC,又∵M是BC的中点,∴∠BEC = 90°, ∴∠AEC = 90°,∴∠AEC = ∠ADB = 90°,又∵∠A =∠A,∴ADB∽AEC, ∴,∴,又∵∠A = ∠A,∴ADE∽ABC. 在RtABD中,∵∠A = 60°,∠ADB = 90°,∴∠ABD = 30°,∴sin30° =. ∵ADE∽ABC,∴. 25.(2013福建漳州,25,14分)如图,在平面直角坐标系中,矩形OABC的边OA = 2, OC = 6,在OC上取点D将AOD沿AD翻折,使O点落在AB边上的E点处,将一个足够大的直角三角板的顶点P从D点出发沿线段DA→AB移动,且一直角边始终经过点D,另一直角边所在直线与直线DE、BC分别交于点M、N. (1)填空:D点坐标是(E点坐标是( (2)如图1,当点P在线段DA上移动时,是否存在这样的点M,使CMN为等腰三角形?若存在,请求出M点坐标,若不存在,请说明理由. (3)如图2,当点P在线段AB上移动时,设P点坐标为(x,2),设CMN的面积为S,请直接写出S与x之间的函数关系式,并求S随x增大而减小时所对应的自变量x的取值范围. 【答案】 解:(1)D(2,0),E(2,2);
(2)(如下图)假设存在点M,使CMN为等腰三角形.过点M作MF⊥CB于F,连接CM, 由折叠知,AE = OA = 2,∠AED = ∠AOD = 90°,∴四边形AODE是正方形,∴OA = OD = DE = AE = 2,∠ADE = ∠ADO = 45°,DE // OA, 则设M点的坐标为(2,m) (0≤m≤4) ∵∠ADE = 45°,∴∠PMD = 45°,∵OA // CB,∴DE // CB,∴∠MNC = ∠PMD = 45°, ∵MF⊥CB,∴∠MFC = 90°,又∵∠MDC = ∠FCD = 90°,∴四边形MDCF为矩形, ∴MF = CD =
6 ? OD = 4,CF = MD = m,∴CM = =, 在RtMFN中,∠MFN = 90°,∠MNF = 45°,∴NF = MF = 4, ∴MN =,CN = NF + CF =
4 + m ①当CM = MN时,即=,∴16 + m2 = 32,∴m = 4,∴M(2,4);
②当CM = CN时,即=
4 + m,∴16 + m2 =
16 + 8m + m2,∴m = 0,∴M(2,0);
③当MN = CN时,即=
4 + m,∴m =? 4,∴M(2,? 4);
∴存在点M(2,4)或(2,0)或(2,? 4),使CMN为等腰三角形;
(3)关系式:S = x2 ? 8x +
16 S = (x ? 4)2,当0≤x........