编辑: yyy888555 | 2019-07-05 |
光催化材料 分会主席:李朝升、黄柏标、郝维昌、叶金花、邹志刚 主旨演讲 B01-K-01 人工光合成太阳能燃料制备:现状与发展 叶金花 天津大学,日本国家材料研究所 B01-K-02 TiO2 和g-C3N4 再认识 付宏刚 黑龙江大学 光催化是实现清洁、可再生能源向化学能转化的重要途径.催化反应常发生在材料的表/界面,因而设计、调控光催化 材料形貌、孔道和表面结构,暴露更多的活性位是提高反应活性的有效策略.在光催化剂方面,我们采用基团络合束缚作 用策略,利用小分子胺(乙二胺等)、氨水及介孔 SiO2 等对 TiO2 初级粒子进行处理、包覆,达到在热处理过程中阻碍粒 子间的直接接触、聚集和粒子的长大,同时抑制相转变的目的,从而有效调控 TiO2 的表面缺陷及晶化程度,提高光生电荷 的分离效率,同时拓展光响应范围,进而得到系列高活性的可见光催化材料,如有序介孔黑 TiO
2、高热稳定性介孔黑 TiO2 空心球、自漂浮双亲性大孔-介孔 3D 网络黑 TiO2 泡沫、F 络合的高能面 TiO2 及氢化介孔 CeO2-xSx 空心球等.此外,暴露 (101)晶面的锐钛矿 TiO2 调控表面氧空位缺陷可实现太阳光驱动的光催化纯水分解,并首次证实为两电子和四电子共存 的水氧化过程,为实现真正的光催化分解纯水提供了新的思路.采用配位组装超分子前驱体路线,使部分三聚氰胺原位水 解形成的三聚氰酸与未反应的三聚氰胺通过分子间氢键组装成六方柱状超分子结构,惰性气氛下热解前驱体后获得具有叠 层堆垛六方管状结构 P 掺杂的 g-C3N4 材料,在可见光下展现出优异的光催化产氢活性,是块体 g-C3N4 的7倍. B01-K-03 Photoelectrochemical and Photovoltaic Approaches for Artificial Photosynthesis 罗景山 南开大学 *Email: [email protected] Fossil fuels are finite energy resources, and their burning causes air pollution and emits large amounts of CO2, leading to global warming. This urges the search for green and sustainable energy sources. Solar energy is sufficient to supply the human energy demand as a renewable energy source. However, the seasonal, regional, and diurnal cycle variations of solar radiation demand an effective method of energy storage beyond electricity generation with photovoltaics. Inspired by natural photosynthesis, converting solar energy directly into chemical fuels through artificial photosynthesis is one of the most promising ways to store solar energy, and it is considered as the Holy Grail of photoelectrochemistry. In this talk, I will discuss our recent works on solar water splitting and CO2 reduction in both photoelectrochemical and photovoltaic approaches, featuring Cu2O photocathodes and perovskite photovoltaic driven systems. Reference: 1. J. Luo, L. Steier, M.-K. Son, M. Schreier, M. T. Mayer, M. Gr?tzel, Nano Letters, 2016, 16, 1848-1857. 2. L. Pan, J. H. Kim, M. T. Mayer?, M.-Kyu Son, A. Ummadisingu?, J. S. Lee, A. Hagfeldt, J. Luo*, M. Gr?tzel*, Nature Catalysis, 2018, doi:10.1038/s41929-018-0077-6. 3. J. Luo, J.-H. Im, M. T. Mayer, M. Schreier, M. K. Nazeeruddin, N.-G. Park, S. D. Tilley, H. J. Fan, M. Gr?tzel, Science, 2014, 345, 1593-1596. 4. M. Schreier, F. Héroguel, L. Steier, S. Ahmad, J. S. Luterbacher, M. T. Mayer, J. Luo*, M. Gr?tzel*, Nature Energy, 2017, 2,
2 17087. 5. J. Luo*, D. A. Vermaas, D. Bi, A. Hagfeldt, W. A. Smith*, M. Gr?tzel, Advanced Energy Materials, 2016, 6, 1600100. 6. J. Luo*, Z. Li, S. Nishiwaki, M. Schreier, M. T. Mayer, P. Cendula, Y. H. Lee, K. Fu, A. Cao, M. K. Nazeeruddin, Y. E. Romanyuk, S. Buecheler, S. D. Tilley, L. H. Wong, A. N. Tiwari, M. Gr?tzel, Advanced Energy Materials, 2015, 5,