编辑: 赵志强 | 2019-09-23 |
1 Immediate Strategies for CO2 Capture Dr Jon Gibbins Imperial College London (伦敦帝国理工学院) 实现二氧化碳收集 的当前战略 ? Imperial College London (伦敦帝国理工学院) Page
2 伦敦帝国理工学院 雷丁大学 阿伯丁大学 剑桥大学 格拉斯歌大学 纽卡斯尔大学 诺丁汉大学 曼切斯特大学 利兹大学 普利茅斯 海洋实验 室 爱丁堡大学 克兰菲尔 德大学 英国二氧化碳收集及储存联盟 英国Tyndall气 候变化中心 英国地质调查局 赫瑞-瓦特大学 ? Imperial College London (伦敦帝国理工学院) Page
3 If CO2 capture and storage is introduced to China in the future it will want to be done: 1.
As cheaply as possible (minimise additional cost of electricity, chemicals etc) 2. Probably, as rapidly as possible (Existing plant as well as new plant) '
Immediate strategies'
are preparations for this. 假如中国引入二氧化碳收集和储存技术,以下两项将会非常重要: 1. 降低成本 (尽可能降低给电力和化工产品带来的额外成本) 2. 加快实施的速度 (无论现有的还是新建的火电厂) 而二氧化碳收集的 当前战略 正是为两项目标服务. ? Imperial College London (伦敦帝国理工学院) Page
4 Immediate strategies apply to all current capture technologies: ? Post-combustion ? Pre-combustion ? Oxyfuel 1. Improve capture technologies to retrofit to the plants that will exist when capture is required 2. Build new fossil fuel plants so it is cheaper to retrofit capture 3. Develop new energy conversion technologies that will include capture from the start 1. 提高收集的技术,可对已有发电站进行收集 2. 新的发电厂则可比已建的发电厂便宜地安装和使用收集装置 3. 开发新的,可在一开始就把二氧化碳收集囊括在内的能源转换技术 以下是 当前战略 所涵盖的收集技术: ? 燃烧后收集 ? 燃烧前收集 ? 氧燃料(二氧化碳混合气)燃烧后收集 ? Imperial College London (伦敦帝国理工学院) Page
5 ? State Council DRC predicts that, China'
s total electrical capacity will reach 950GW by 2020, at least twice the current amount, and that coal will still be the main fuel. ? From present trends, supercritical power plant will dominate new construction for the foreseeable future. ? 国务院发展研究中心的信息显示 ,到2020年,中国电力总装机容 量将会达到950GW,至少是现在 的两倍还要多,而煤依然是主要 燃料,意味着中国可能仍需要兴 建大量以煤为原料的的发电站. ? 另一方面,由于过去十年电力建 设波动很大,将来的发展并不容 易准确预测,但从现有的资料和 情况来看,大体的趋势为:很多 的超临界锅炉会投入使用,煤粉 燃烧仍将主导一段较长的时间. 中国煤燃烧锅炉订单类型趋势 (>
200MW) Trend in CoalCFiredBoiler Orders ? Imperial College London (伦敦帝国理工学院) Page
6 Post-combustion capture 1. Current studies mainly use liquid solvents (amines) 2. Solid adsorbents and '
frosting'
CO2 by cooling also being considered 3. Best with supercritical power plant 4. Flexible C can adjust capture level to get best economic return 5. Co-combustion with biomass is easy 燃烧后收集二氧化碳的技术现况 1. 现阶段的研究主要集中于液体吸收溶剂 (如胺) 2. 固体吸附以及二氧化碳 固化 是可发展的方向 3. 最好可配合超临界发电站 4. 吸收程度灵活性――能够通过调整收集的程度来实现最大的经济回报 5. 生物能的伴烧是容易的 ? Imperial College London (伦敦帝国理工学院) Page
7 Work involving Imperial on post-combustion capture: 1. Rules to ensure good post-combustion capture from power plant 2. Improved integration with steam cycle 3. Industrial study for IEA GHG with Fluor, Mitsui Babcock and Alstom 4. New pulverised coal plant in Canada designed to have capture added later 帝国学院积极参与燃烧后收集二氧化碳的研究包括: 1. 设法使得发电厂燃烧后回收二氧化碳变得更加可行 2. 提升联合蒸汽循环 3. 与Fluor, Mitsui Babcock 和Alstom 合作共同为国际能源组织温室气 体部门进行重要的工业研究 4. 加拿大正在建可在将来增加收集二氧化碳设计和装置的煤粉燃烧发电站 ? Imperial College London (伦敦帝国理工学院) Page
8 Work involving Imperial on post-combustion capture (Cont.) : 5. Industrial study on adding post-combustion CO2 capture to existing UK power plants 6. New study with co-optimisation of power plant and capture system just starting 7. Solvent development with University of Regina 帝国学院参与有关燃烧后收集二氧化碳的工作(续): 5. 对现有的英国发电厂增加收集系统进行工业研究 6. 发电厂和收集系统整体优化研究才刚刚开始 7. 与Regina大学共同发展吸收溶剂 ? Imperial College London (伦敦帝国理工学院) Page
9 IEA GHG PH4/19, Potential for improvement in gasification combined cycle power generation with CO2 capture, May Pre-combustion capture on oxygen blown entrained flow gasifier IGCC plant Shell gasifier Texaco gasifier Without capture With capture Capture penalty Without capture With capture Capture penalty Net power output MW
776 676
826 730 Efficiency % LHV 43.1 34.5 8.6 38.0 31.5 6.5 Capital cost $/kW
1371 1860
489 1187
1495 308 CO2 emissions g/kWh
763 142
833 152 CO2 captured g/kWh
809 851 Increase in fuel use due to capture 25% 21% Electricity cost c/kWh 4.8 6.3 1.5 4.5 5.6 1.1 IEA GHG PH4/33, Improvement in power generation with post-combustion capture of CO2, November
2004 Post-combustion capture on advanced supercritical pulverized coal plant Fluor amine technology MHI amine technology Without capture With capture Capture penalty Without capture With capture Capture penalty Net power output MW
758 666
754 676 Efficiency % LHV 44.0 34.8 9.2 43.7 35.3 8.4 Capital cost $/kW
1222 1755
533 1171
1858 687 CO2 emissions g/kWh
743 117
747 92 CO2 captured g/kWh
822 832 Increase in fuel use due to capture 26% 24% Electricity cost c/kWh 4.4 6.2 1.8 4.3 6.3 2.0 ? Imperial College London (伦敦帝国理工学院) Page
10 Oxyfuel Capture Concept 氧燃料燃烧的二氧化碳收集 Source: IEA GHG ? Imperial College London (伦敦帝国理工学院) Page
11 Work involving Imperial on oxyfuel capture: 1. Improved integration with steam cycle 2. Industrial study for IEA GHG with Mitsui Babcock, Air Products and Alstom 3. Industrial study on adding oxyfuel CO2 capture to existing UK power plants 4. Comparing pulverized coal ignition in air and CO2/O2 mixtures (with US partners) 5. CFD modelling for air and oxyfuel burners 帝国理工参与的氧燃料燃烧收集二氧化碳工作: 1. 使用联合蒸汽循环来提高效率 2. 合作Mitsui Babcock,Air product 和Alstom 为IEA温室气体部门 进行工业研究 3. 研究在英国发电站改装氧燃料燃烧二氧化碳收集系统 4. 与美国伙伴合作比较煤粉在空气中和在二氧化碳氧气混合气中燃烧 5. 对空气燃烧器和氧燃料燃烧器进行计算流体力学建模 ? Imperial College London (伦敦帝国理工学院) Page
12 IEA GHG PH4/33, Improvement in power generation with post-combustion capture of CO2, November
2004 Post-combustion capture on advanced supercritical pulverized coal plant Fluor amine technology MHI amine technology Without capture With capture Capture penalty Without capture With capture Capture penalty Net power output MW
758 666
754 676 Efficiency % LHV 44.0 34.8 9.2 43.7 35.3 8.4 Capital cost $/kW
1222 1755 44%
1171 1858 59% CO2 emissions g/kWh
743 117
747 92 CO2 captured g/kWh
822 832 Increase in fuel use due to capture 26% 24% Electricity cost c/kWh 4.4 6.2 41% 4.3 6.3 47% IEA GHG 2005/9 Oxy combustion processes for CO2 capture from power plants, July
2005 Oxyfuel capture on advanced supercritical pulverized coal plant Oxyfuel, cryogenic ASU MHI amine technology (PH4/33) Without capture With capture Capture penalty Without capture With capture Capture penalty Net power output MW
677 532
754 676 Efficiency % LHV 44.2 35.4 8.8 43.7 35.3 8.4 Capital cost $/kW
1513 2342 55%
1171 1858 59% CO2 emissions g/kWh
722 85
747 92 CO2 captured g/kWh
831 832 Increase in fuel use due to capture 25% 24% Electricity cost c/kWh 4.9 7.3 49% 4.3 6.3 47% ? Imperial College London (伦敦帝国理工学院) Page
13 Post-combustion research and demonstration needs: 1. Better solvents (for use with power plants) 2. Cheaper capture equipment 3. Demonstrate gas cleanup and solvent life on real plant 燃烧后收集研究及示范项目的需要: 1. 更好的溶剂 (用于发电厂内) 2. 更便宜的二氧化碳收集装置 3. 装有气体净化装置及有关溶液寿命的示范性电厂 ? Imperial College London (伦敦帝国理工学院) Page
14 Oxyfuel research and demonstration needs: 1. Burner designs for oxyfuel C need direct oxygen at the burner 2. Improved oxygen production methods C Ion Transfer Membranes 3. Understand safety implications 4. Vattenfall/Germany (30 MWth) and IHI/Australian (30MWe) trials planned 氧燃料燃烧的研究及示范项目需要: 1. 专在氧气和二氧化碳混合气燃烧情况下使用的燃烧器 2. 进一步改善纯氧制造方法:如氧气分离薄膜 3. 研究及确定有关的安全准则 4. Vattenfall (德国)(30MWth)及IHI(澳洲)(30MWe) 有相关试验计划 ? Imperial College London (伦敦帝国理工学院) Page
15 Purpose of Capture Ready Power Plant 1. Improve capture technologies to retrofit to the plants that will exist when capture is required 2. Build new plants so it is cheaper to retrofit capture 3. Develop new technologies that will include capture from the start 发电厂的 收集预留 的目标(为新电........