编辑: 梦三石 2019-05-02
-280- 第二十四章 时间序列模型 时间序列是按时间顺序排列的、随时间变化且相互关联的数据序列.

分析时间序 列的方法构成数据分析的一个重要领域,即时间序列分析. 时间序列根据所研究的依据不同,可有不同的分类. 1.按所研究的对象的多少分,有一元时间序列和多元时间序列. 2.按时间的连续性可将时间序列分为离散时间序列和连续时间序列两种. 3.按序列的统计特性分,有平稳时间序列和非平稳时间序列.如果一个时间序列 的概率分布与时间t 无关,则称该序列为严格的(狭义的)平稳时间序列.如果序列的

一、二阶矩存在,而且对任意时刻t 满足: (1)均值为常数 (2)协方差为时间间隔τ 的函数. 则称该序列为宽平稳时间序列, 也叫广义平稳时间序列. 我们以后所研究的时间序列主 要是宽平稳时间序列. 4.按时间序列的分布规律来分,有高斯型时间序列和非高斯型时间序列. §1 确定性时间序列分析方法概述 时间序列预测技术就是通过对预测目标自身时间序列的处理,来研究其变化趋势 的.一个时间序列往往是以下几类变化形式的叠加或耦合. (1)长期趋势变动.它是指时间序列朝着一定的方向持续上升或下降,或停留在 某一水平上的倾向,它反映了客观事物的主要变化趋势. (2)季节变动. (3)循环变动.通常是指周期为一年以上,由非季节因素引起的涨落起伏波形相 似的波动. (4)不规则变动.通常它分为突然变动和随机变动. 通常用 t T 表示长期趋势项, t S 表示季节变动趋势项, t C 表示循环变动趋势项, t R 表示随机干扰项.常见的确定性时间序列模型有以下几种类型: (1)加法模型 t t t t t R C S T y + + + = (2)乘法模型 t t t t t R C S T y ? ? ? = (3)混合模型 t t t t R S T y + ? = t t t t t R C T S y ? ? + = 其中 t y 是观测目标的观测记录,

0 ) ( = t R E ,

2 2 ) ( σ = t R E . 如果在预测时间范围以内,无突然变动且随机变动的方差

2 σ 较小,并且有理由认 为过去和现在的演变趋势将继续发展到未来时,可用一些经验方法进行预测. §2 移动平均法 移动平均法是根据时间序列资料逐渐推移,依次计算包含一定项数的时序平均数, 以反映长期趋势的方法. 当时间序列的数值由于受周期变动和不规则变动的影响, 起伏 较大,不易显示出发展趋势时,可用移动平均法,消除这些因素的影响,分析、预测序 -281- 列的长期趋势. 移动平均法有简单移动平均法,加权移动平均法,趋势移动平均法等. 2.1 简单移动平均法 设观测序列为 T y y , ,

1 L ,取移动平均的项数 T N <

.一次简单移动平均值计算公 式为: ) (

1 1

1 )

1 ( + ? ? + + + = N t t t t y y y N M L ) (

1 ) (

1 ) (

1 )

1 (

1 1 N t t t N t t N t t y y N M y y N y y N ? ? ? ? ? ? + = ? + + + = L (1) 当预测目标的基本趋势是在某一水平上下波动时,可用一次简单移动平均方法建 立预测模型: ) ? ? (

1 ?

1 )

1 (

1 + ? + + + = = N t t t t y y N M y L , L ,

1 , + = N N t , (2) 其预测标准误差为: N T y y S T N t t t ? ? = ∑+ =

1 2 ) ? ( , (3) 最近 N 期序列值的平均值作为未来各期的预测结果.一般 N 取值范围:

200 5 ≤ ≤ N .当历史序列的基本趋势变化不大且序列中随机变动成分较多时, N 的 取值应较大一些.否则 N 的取值应小一些.在有确定的季节变动周期的资料中,移动 平均的项数应取周期长度.选择最佳 N 值的一个有效方法是,比较若干模型的预测误 差.预测标准误差最小者为好. 例1某企业

下载(注:源文件不在本站服务器,都将跳转到源网站下载)
备用下载
发帖评论
相关话题
发布一个新话题