编辑: Cerise银子 | 2019-09-25 |
ecologica.cn [20]摇Wang X, Wang C L, Zhou G Y, Yan J H, Sun G, Wang C L. Dry season energy balance of a coniferous and broad鄄leaved mixed forest at Dinghushan mountain, Southern China. Journal of Tropical and Subtropical Botany, 2005, 13(3):205鄄210. [21]摇Zhao M F, Xiang W H, Tian D L, Zhao Z H,Yan W D,Fang X. The evapotranspiration estimation of planted Chinese fir in Huitong of Hunan Province based on the 3鄄PG model. Hunan Agricultural Science, 2008(3):158鄄162. [22]摇Wang Z Y. Energy balance and Water Vapor Flux of Snail Control and Schistosomiasis Prevention Forests Ecosystem in Yangtze River Beach Land [ D]. Beijing: Chinese Forestry Research, 2008. 70鄄72. [23]摇Yu G R, Wang Q F, Mi N. Ecophysiology of Plant Photosynthesis, Transpiration, and Water Use. Beijing: Science Press, 2010:351鄄352. [24]摇Guo R P, Mo X G. Differences of evapotranspiration on forest, grassland and farmland. Chinese Journal of Applied Ecology, 2007, 18(8):1751鄄1757. [25]摇Yu G R, Niu D, Wang S Q, Wang Q F, Fu Y L, Liu X A, Ren C Y, Mi N, Sun X M,Li Z Q, Li Q K, He H L, Song X, Zhang L M, Zhao F H, Gao L P, Wen X F. Principles of Flux Measurement in Terrestrial Ecosystems. Beijing: Advanced Education Press, 2006:33鄄34. [26]摇Mahrt L, Vickers D. Relationship of area鄄averaged carbon dioxide and water vapour fluxes to atmospheric variables. Agricultural and Forest Meteorology, 2002, 112(3 / 4): 195鄄202. [27]摇Jia Zh J, Song Ch Ch, Wang Y S, Huang Y, Shi L Q. Studies on Evapotranspiration over Mire in the Sanjiang Plain. Climatic and Environmental Research, 2007, 12(4):496鄄502. [28]摇Ji X B, Kang E S, Zhao W Z, Chen R S, Jin B W, Zhang Z H. Simulation of the evapotranspiration from irrigational farmlands in the Oases of the Heihe River Basin. Journal of Glacialogy and Geocryology, 2004, 26(6):713鄄719. [29]摇Anthoni P M, Law B E, Unsworth M H. Carbon and water vapor exchange of an open鄄canopied ponderosa pine ecosystem. Agricultural and Forest Meteorology, 1999, 95(3): 151鄄168. [30]摇Takagi K, Tsuboya T, Takahashi H. Diurnal hystereses of stomatal and bulk surface conductances in relation to vapor pressure deficit in a cool鄄temperature wetland. Agricultural and Forest Meteorology, 1998, 91(3 / 4):
177 鄄191. 参考文献: [
1 ]摇 温国胜, 张利阳, 张汝民, 王电杰, 张俊. 毛竹光合生理对气 候变化的短期响应模拟. 浙江农林大学学报,2011,28(4): 555鄄561. [
2 ]摇 张利阳, 温国胜, 王圣杰, 刘兆玲.毛竹光响应模型适用性分 析. 浙江农林大学学报,2011,28(2):188鄄193. [
3 ]摇 施建敏, 郭起荣, 杨光耀. 毛竹光合动态研究.林业科学研究, 2005,18(5):551鄄555. [
4 ]摇 李雅红, 江洪, 原焕英, 刘源月, 周国模, 余树全. 西天目山 毛竹林土壤呼吸特征及其影响因子. 生 态学报, 2010,
30 (17): 4590鄄4597. [
5 ]摇 肖复明, 范少辉, 汪思龙, 官凤英, 于小军, 申正其. 毛竹、杉 木人工林生态系统碳平衡估算. 林业科学, 2010,
46 (11): 59鄄64. [
6 ]摇 周国模.毛竹林生态系统中碳储量、固定及其分配与分布的研 究[D]. 浙江:浙江大学,2006. [10]摇 刘渡, 李俊, 于强, 同小娟, 欧阳竹.涡度相关观测的能量闭 合状况及其对农田蒸散测定的影响.生态学报,2012,32(17): 5309鄄5317. [14]摇 李菊, 刘允芬, 杨晓光, 李俊. 千烟洲人工林水汽通量特征及 其与环境因子的关系.生态学报,2006,26(8):2449鄄2456. [15]摇 于贵瑞, 孙晓敏. 中国陆地生态系统碳通量观测技术及时空 变化特征. 北京:科学出版社,2008:174鄄175. [17]摇 黄振英, 董学军, 蒋高明, 袁文平. 沙柳光合作用和蒸腾作用 日动态 变化的初步研究. 西北植物学报, 2002,
22 ( 4): 817鄄823. [18]摇 蔡平, 马特森, 穆尼著. 陆地生态系统生态学原理/ / 李博, 赵斌, 彭容豪, 陆建忠, 姜丽芬, 廖成章, 杨晓明, 马涛, 吴晓 雯, 马志军, 李晨光译.北京:高等教育出版社,2005:61鄄62. [20]摇 王旭, 王春林, 周国逸, 闫俊华, Sun G, 王春林. 鼎湖山针阔 混交林旱季能量平衡研究. 热带亚热带植物学报, 2005,
13 (3):205鄄210. [21]摇 赵梅芳, 项文化, 田大伦, 赵仲辉, 闫文德, 方晰. 基于 3鄄PG 模型的湖南会同杉木人工林蒸发散估算. 湖南农业科学, 2008(3):158鄄162. [22]摇 王昭艳. 长江滩地抑螺防病林生态系统能量平衡与水汽通量 研究 [D]. 北京:中国林业科学研究院,2008. 70鄄72. [23]摇 于贵瑞, 王秋凤, 米娜. 植物光合、蒸腾与水分利用的生理生 态学.北京: 科学出版社,2010:350鄄360. [24]摇 郭瑞萍, 莫兴国.森林、草地和农田典型植被蒸散量的差异. 应 用生态学报,2007:18(8):1751鄄1757. [25]摇 于贵瑞, 牛栋, 王绍强, 王秋凤, 付玉玲, 刘新安, 任传友, 米娜, 孙晓敏, 李正泉, 李庆康, 何洪林, 宋霞, 张雷明, 赵 风华, 高鲁鹏, 温学发. 陆地生态系统通量观测的原理与方 法.北京:高等教育出版社, 2006:33鄄34. [27]摇 贾志军, 宋长春, 王跃思, 黄耀, 石立庆. 三江平原典型沼泽 湿地蒸散量研究.气候与环境研究,2007:12(4):496鄄502. [28]摇 吉喜斌, 康尔泗, 赵文智, 陈仁升, 金博文, 张智慧. 黑河流 域山前绿洲灌溉农田蒸散发模拟研究. 冰川冻土,2004,
26 (6):713鄄719.
9 0
9 4 摇17 期摇摇摇刘玉莉摇 等:安吉毛竹林水汽通量变化特征及其与环境因子的关系 摇第34 卷第
17 期2014 年9月生态学报ACTA ECOLOGICA SINICA Vol.34,No.17 Sep.,2014 http:/ / www.ecologica.cn 基金项目:国家海洋局青年海洋科学基金资助项目(2011136);
国家海洋局第三海洋研究所基本科研业务费专项资金资助项目( 海三科 2012012);
海洋公益性行业科研专项经费项目(201305030鄄4) 收稿日期:2013鄄04鄄25;
摇摇修订日期:2014鄄07鄄03 *通讯作者 Corresponding author.E鄄mail: wjj5358@ sina.com DOI: 10.5846/ stxb201304250822 林俊辉,郑凤武,何雪宝,王建军.福建沿岸红树林湿地多毛类生态分布.生态学报,2014,34(17):4910鄄4919. Lin J H, Zheng F W, He X B, Wang J J.Ecological distribution of benthic polychaeta in coastal mangrove swamps of Fujian Province.Acta Ecologica Sinica,2014,34(17):4910鄄4919. 福建沿岸红树林湿地多毛类生态分布 林俊辉,郑凤武,何雪宝,王建军* (国家海洋局第三海洋研究所 海洋生物与生态实验室,厦门摇 361005) 摘要:根据
2009 年至
2012 年在福建沿岸
5 块典型红树林湿地所作的调查资料,分析了福建沿岸红树林湿地多毛类的物种多样 性、生态分布特点以及与环境因子的关系. 研究区域春、秋两季共记录多毛类动物
45 种,其中沙蚕科、海稚虫科和小头虫科
3 个科种类最为丰富,种类属性为低盐或广盐性种类. 多毛类平均密度和生物量分别为
190 个/ m2 和2.17 g/ m2 ,样地伊季节双因 素方差分析表明,密度在不同样地间差异显著,密度和生物量的季节变化均为春季显著高于秋季. 此外,林外光滩的多毛类数 量要高于林内,不同样地的摄食群组成各异. 红树林断面的平均种类数和多样性指数 H忆与沉积物粘土含量呈显著负相关,与 多毛类类群的大尺度空间分布特征关联最为紧密的因子为地理纬度. 关键词:红树林湿地;
多毛类;
生态分布 Ecological distribution of benthic polychaeta in coastal mangrove swamps of Fujian Province LIN Junhui, ZHENG Fengwu, HE Xuebao, WANG Jianjun* Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China Abstract: Numerous biotic surveys in mangrove swamps have been conducted throughout the whole world, and these studies have demonstrated that macrobenthos is among the most diverse biological group. Although benthic polychaetes, together with mollusks and crustaceans, constitute the main component of macrobenthos in mangroves, their diversity and abundance have been relatively poorly studies or even neglected, leading to a poor understanding of the ecological characteristics of this faunal group. In spite of the great spatial distribution variation of polychaetes, most previous studies located at certain area or one single location, were inadequately to reflect the spatial distribution of polychaetes. Aiming to describe the polychaete diversity and its distribution pattern in mangrove swamps in Fujian province, the present study carried out investigations along
11 transects in
5 typical mangrove swamps, namely Yaojiayu(FDH), Yundan Island(YDH), Luoyang River(QZH), Jiulong River( LHH) and Zhang River( YXH), in spring and autumn from
2009 to 2012. Macrobenthic samples were attained using digging method with 0.25 cm伊0.25 cm sampling square, and the fauna was retained by sieving sediment through 0.5 mm mesh screen. A total of
45 polychaete species were recorded, and the diversity was richer in spring than in autumn. The faunal assemblage was mainly consisting of three families― Nereididae, Spionidae and Capitellidae, which accounted for 64.4% of all speices, and the recorded species were mainly of euryhaline and hypohaline species. Some species, such as Parheteromastus tenuis and Mastobranchus indicus seems to exclusively inhabit in mangrove areas as they have not been recorded in non鄄mangrove mudflat in previous studies. Although the species richness was similar among all the sampling locations, species compositions and dominant species showed great difference and only
3 species occured at all the http:/ / www.ecologica.cn
5 locations. The average density and biomass of benthic polychaeta in these investigated areas were
190 ind / m2 and 2.17 g/ m2 , respectively. Results of two鄄way ANOVA analysis showed that seasonal variations of both density and biomass were significant, with values significantly higher in spring than in autumn, probably due to the fact that most polychaete species reproduce in spring. Moreover, significant difference in density were also found among sampling locations, but the biomass were comparable among these mangroves. Polychaete densities recorded in this study were higher than those reported in the mangroves of Fujian in 1980s while their biomass were lower. Mann鄄Whitney U test showed that both polychaete density and biomass in foreshore mudflat were significantly higher than those in mangrove forests, indicating that the habitat environments in mudflat is more suitable for polychaete group. Such conclusion also agrees with those reported by previous researchers. In terms of the structure of feeding guilds, the five mangrove swamps in this study had different composition although carnivores and deposit feeders dominated these mangrove areas, which was partly related to the available food supply. Univariate analysis showed that bi........