编辑: ddzhikoi | 话题热度:198 2019-11-15 |
关键词: 锅炉,处理工艺,处理,处置,分析,工艺,废气,锅炉废气,废气处理工艺,废气处理,办理,清理 | 添加资源 |
资源与摘要 | 编辑 | |
---|---|---|
锅炉废气处理工艺
湿式静电除尘技术 主要工艺原理: 烟气经脱硫二级塔脱硫后,在通过湿式电除尘其入口区分两路进入除尘器本体,在本体内,水平流动的烟气与电场顶部的喷淋水(循环喷淋)接触发生化学反应吸收SO3及SO2,同时发生物理反应,粉尘和雾滴发生凝并、荷电、长大、趋附于极板随极板上的水膜流入灰水斗内。 灰水斗内的灰水流入循环水箱,经加碱中和后由泵打入灰水分离器,干净水循环进入电场喷淋,少量污水排往前置的湿法脱硫工艺水箱,供湿法脱硫使用。除尘脱硫(SO3、SO2)后的烟气经主烟道由烟囱排入大气。 优点: 1、不受比电阻影响 2、没有二次扬尘 3、极板上无粉尘堆积 4、无运动构件 5、脱除SO3酸雾,缓解烟道、烟囱腐蚀 6、有效捕集PM2.5 静电除尘技术 主要工艺原理: 变常规卧式静电除尘器(下简称ESP)的固定电极为移动电极(以下简称MEEP);变ESP振打清灰为旋转刷清灰,从工艺上改变ESP的捕集和清灰方式,以适应超细颗粒粉尘和高比电阻颗粒粉尘的收集,达到提高除尘效率的目的。 以ESP和MEEP的结合,以较高的性能价格比实现高除尘效率,保障烟尘排放浓度在30mg/Nm以下,满足中国环保新标准的要求。 高效低低温电除尘技术 主要工艺原理: 在除尘器的进口喇叭处和前置的垂直烟道处分别设置烟气余热利用节能装置,两段换热装置串联连接,采用汽机凝结水与热烟气通过烟气余热利用节能装置进行热交换,使除尘器的运行温度由原来的150℃下降到95℃左右。垂直段换热装置将烟温从150℃降至115℃,水平段换热装置将烟温从115℃降至95℃。 烟温降低使得烟尘比电阻降低至109~1010Ω˙cm的电除尘器最佳工作范围;同时,烟气的体积流量也得以降低,相应地降低电场烟气通道内的烟气流速。这些因素均可提高电除尘效率,使得电除尘出口粉尘排放浓度达到国家环保排放要求。 此外,同步对电场气流分布进行CFD分析与改进,改善各室流量分配及气流均布。将换热与电除尘器进口喇叭紧密结合,利用换热器替代原电除尘器第一层气流分布板,重新布置气流分布,形成换热、除尘一体式布置的系统解决方案,实现综合阻力最低。 该技术成熟、稳定,节能降耗的同时又能减排,非常适用于燃煤电站锅炉烟气治理。 主要工艺原理: 通过调整供电方式与电气参数,以克服反电晕危害,并达到有效提高除尘效率和节能效果的目的,如采用高频电源、三相电源、脉冲电源等供电方式。 以高频电源为例,用高频电源代替原有工频电源对电除尘器进行供电,具备纯直流供电时输出纹波小,间歇供电时间歇比任意可调的特点,能给电除尘器提供从纯直流到脉动幅度很大的各种电压波形;针对各种特定的工况,可以提供最合适的电压波形,通常能有效降低排放30%以上,且比工频电源节能20%以上,与电除尘节能优化控制系统配合,可实现电除尘系统节能50%以上。 电袋复合除尘技术 主要工艺原理: 采用“前级电除尘器+后级袋式除尘器”的配置型式,首先由前电场捕集80%左右的粗粉尘,其余粉尘则由堆积在滤袋上的荷电粉饼层捕获。 电袋复合除尘器的气流分布设计是决定设备性能的关键技术,菲达独特的二次导流技术保证了各滤室气流分布的均匀性,也减少了粉尘的“二次吸附”,良好的气流分布不仅可以降低除尘器的运行阻力,还可以延长滤袋的寿命,保证除尘器的高效率,实现电除尘和袋除尘的有机集成;出色的均流清灰喷吹技术,具有“软着陆”功能的活塞式脉冲阀形成了可靠的清灰系统;国际上最先进的滤料动态过滤性能测试设备,严格的试验程序科为用户优选性能优异的滤料;还有采用专利技术的笼骨、零泄漏的旁通阀以及完善的控制系统。 高效袋式除尘 一种干式滤尘技术,它适用于捕集细小、干燥、非纤维性粉尘。其工作原理是利用滤袋对含尘气体进行过滤,颗粒大、比重大的粉尘,由于重力的作用沉降下来,落入灰斗,含有较细小粉尘的气体在通过滤料时,粉尘被阻留,使气体得到净化。 主要工艺原理: 改进后的袋式除尘器,设置气流分布板、导流板和导流通道,含尘气体水平进入袋式除尘器,经进口喇叭、气流分布板、导流板和导流通道进入中集箱,经滤袋过滤以后,再水平排出,从而表现出结构简单,流程短、流动顺畅、流动阻力低的特点,以达到降低能耗,提高除尘效率,防止冲刷损坏滤袋的目的。 预荷电增效捕集装置 主要工艺原理: 含尘气体进入除尘器前,先利用正、负高压对其进行分列荷电处理,使相邻两列的烟气粉尘带上正、负不同极性的电荷,然后,通过扰流装置的扰流作用,使带异性电荷的不同粒径粉尘产生速度或方向差异,增加粒子碰撞机会,从而有效聚合,形成大颗粒后被电除尘器有效收集。 溴化钙添加与FGD协同脱汞技术 主要工艺原理: 湿法脱硫装置(WFGD)可以达到一定的除汞目的,烟气通过WFGD后,总汞的脱除率在10%~80%范围内,Hg2+的去除率可以达到80%~95%,不溶性的气态单质Hg0去除率几乎为0,气态单质Hg0的去除始终是烟气中汞污染控制的难点。 湿法脱硫装置对氧化态汞的处理效果虽然较好,但对单质汞的处理不理想,如果利用氧化剂使烟气中的Hg0转化为Hg2+,WFGD的除汞效率就会大大提高。 实际燃煤烟气中汞主要以Hg0存在,研究如何提高烟气中的Hg0转化为Hg2+的转化率,是目前利用WFGD脱汞的重点。利用强氧化性且具有相对较高蒸气压的添加剂加入到烟气中,使得几乎所有的单质汞都与之发生反应,形成易溶于水的二价汞化合物,提高了烟气中Hg2+比例,脱硫设施的除汞率明显地提高。 乙醇胺法CO2捕集技术 主要工艺原理: 工艺流程主要由三部分组成:以吸收塔为中心,辅以喷水冷却及增压设备;以再生塔和再沸器为中心,辅以酸气冷凝器以及分离器和回流系统;介于以上两者之间的部分,主要有富酸气吸收液、再生吸收液换热及过滤系统。 从炉后经除尘、脱硫后引来的烟气温度约为50℃,经设置在CO2捕集装置吸收塔前的旋流分离装置将烟气中的石膏液滴脱除并降尘,然后进入烟气冷却器中与循环冷却水换热,使其温度降到~40℃,达到MEA理想吸收温度,通过气水分离器除去游离水后经增压风机加压后直接进入捕集装置吸收塔进行CO2吸收。 设置烟气预处理系统,脱除烟气脱硫后携带的粉尘、水等杂质对系统的长期稳定运行有利,同时使用抗氧化剂和缓蚀剂,吸收剂消耗低,设备腐蚀小。增压风机用来克服气体通过捕集装置吸收塔时所产生的阻力。 在捕集装置吸收塔中,烟气自下向上流动,与从上部入塔吸收液形成逆流接触,使CO2得到脱除,净化后烟气从塔顶排出。由于MEA具有较高的蒸汽压,为减少MEA蒸汽随烟气带出而造成吸收液损失,通常将吸收塔分成两段,下段进行酸气吸收,上段通过水洗,降低烟气中的MEA蒸汽含量。 洗涤水循环利用,为防止洗涤水中MEA富集,需要将一部分洗涤水并入富液中送去再生塔再生,损失的洗涤水通过补给水系统来保持。 吸收了CO2的富液通过富液泵加压送至再生塔,为减少富液再生时蒸汽的消耗量,利用再生塔出来的吸收溶液的余热对富液进行加热。富液从再生塔的上部入塔,自上向下流动,与从塔的下部上升的热蒸汽接触,升温分离出CO2。富液达到再生塔下部时所吸收的CO2已解析出绝大部分,此时可称为半贫液。半贫液进入再沸器内进一步解析,残余的CO2分离出来,富液变成贫液。 出再沸器的贫液回流至再生塔底部缓冲后从底部流出,经贫富液换热回收装置,通过贫液泵加压进入贫液冷却器,在冷却器中冷却至适当温度进入吸收塔,从而完成溶液的循环。 从再生塔塔顶出来的CO2蒸汽混合物经再生冷却器冷却,使其中的水蒸汽大部分冷凝下来,此冷凝水进入分离器、地下槽、并送入再生塔。为维持吸收液的清洁,在贫液冷却器后设立旁路过滤器,脱除吸收液中的铁锈等固体杂质,分离的CO2气体进入后续的精制装置。 石膏法 石灰石——石膏法脱硫工艺是世界上应用最广泛的一种脱硫技术,日本、德国、美国的火力发电厂采用的烟气脱硫装置约90%采用此工艺。 它的工作原理是:将石灰石粉加水制成浆液作为吸收剂泵入吸收塔与烟气充分接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及从塔下部鼓入的空气进行氧化反应生成硫酸钙,硫酸钙达到一定饱和度后,结晶形成二水石膏。经吸收塔排出的石膏浆液经浓缩、脱水,使其含水量小于10%,然后用输送机送至石膏贮仓堆放,脱硫后的烟气经过除雾器除去雾滴,再经过换热器加热升温后,由烟囱排入大气。由于吸收塔内吸收剂浆液通过循环泵反复循环与烟气接触,吸收剂利用率很高,钙硫比较低,脱硫效率可大于95%。 系统组成: (1)石灰石储运系统 (2)石灰石浆液制备及供给系统 (3)烟气系统 (4)SO2 吸收系统 (5)石膏脱水系统 (6)石膏储运系统 (7)浆液排放系统 (8)工艺水系统 (9)压缩空气系统 (10)废水处理系统 (11)氧化空气系统 (12)电控制系统 技术特点: ⑴、吸收剂适用范围广:在FGD装置中可采用各种吸收剂,包括石灰石、石灰、镁石、废苏打溶液等; ⑵、燃料适用范围广:适用于燃烧煤、重油、奥里油,以及石油焦等燃料的锅炉的尾气处理; ⑶、燃料含硫变化范围适应性强:可以处理燃料含硫量高达8%的烟气; ⑷、机组负荷变化适应性强:可以满足机组在15——100%负荷变化范围内的稳定运行; ⑸、脱硫效率高:一般大于95%,最高达到98%; ⑹、专利托盘技术:有效降低液/气比,有利于塔内气流均布,节省物耗及能耗,方便吸收塔内件检修; ⑺、吸收剂利用率高:钙硫比低至1.02——1.03; ⑻、副产品纯度高:可生产纯度达95%以上的商品级石膏; ⑼、燃煤锅炉烟气的除尘效率高:达到80%——90%; ⑽、交叉喷淋管布置技术:有利于降低吸收塔高度。 推荐的适用范围: ⑴、200MW及以上的中大型新建或改造机组; ⑵、燃煤含硫量在0.5——5%及以上; ⑶、要求的脱硫效率在95%以上; ⑷、石灰石较丰富且石膏综合利用较广泛的地区 喷雾干燥法 喷雾干燥法脱硫工艺以石灰为脱硫吸收剂,石灰经消化并加水制成消石灰乳,消石灰乳由泵打入位于吸收塔内的雾化装置,在吸收塔内,被雾化成细小液滴的吸收剂与烟气混合接触,与烟气中的SO2发生化学反应生成CaSO3,烟气中的SO2被脱除。与此同时,吸收剂带入的水分迅速被蒸发而干燥,烟气温度随之降低。脱硫反应产物及未被利用的吸收剂以干燥的颗粒物形式随烟气带出吸收塔,进入除尘器被收集下来。脱硫后的烟气经除尘器除尘后排放。为了提高脱硫吸收剂的利用率,一般将部分除尘器收集物加入制浆系统进行循环利用。该工艺有两种不同的雾化形式可供选择,一种为旋转喷雾轮雾化,另一种为气液两相流。 喷雾干燥法脱硫工艺具有技术成熟、工艺流程较为简单、系统可靠性高等特点,脱硫率可达到85%以上。该工艺在美国及西欧一些国家有一定应用范围(8%)。脱硫灰渣可用作制砖、筑路,但多为抛弃至灰场或回填废旧矿坑。 磷铵肥法 磷铵肥法烟气脱硫技术属于回收法,以其副产品为磷铵而命名。该工艺过程主要由吸附(活性炭脱硫制酸)、萃取(稀硫酸分解磷矿萃取磷酸)、中和(磷铵中和液制备)、吸收(磷铵液脱硫制肥)、氧化(亚硫酸铵氧化)、浓缩干燥(固体肥料制备)等单元组成。它分为两个系统: 烟气脱硫系统——烟气经高效除尘器后使含尘量小于200mg/Nm3,用风机将烟压升高到7000Pa,先经文氏管喷水降温调湿,然后进入四塔并列的活性炭脱硫塔组(其中一只塔周期性切换再生),控制一级脱硫率大于或等于70%,并制得30%左右浓度的硫酸,一级脱硫后的烟气进入二级脱硫塔用磷铵浆液洗涤脱硫,净化后的烟气经分离雾沫后排放。 肥料制备系统——在常规单槽多浆萃取槽中,同一级脱硫制得的稀硫酸分解磷矿粉(P2O5 含量大于26%),过滤后获得稀磷酸(其浓度大于10%),加氨中和后制得磷氨,作为二级脱硫剂,二级脱硫后的料浆经浓缩干燥制成磷铵复合肥料。 炉内喷钙尾部增湿法 炉内喷钙加尾部烟气增湿活化脱硫工艺是在炉内喷钙脱硫工艺的基础上在锅炉尾部增设了增湿段,以提高脱硫效率。该工艺多以石灰石粉为吸收剂,石灰石粉由气力喷入炉膛850——1150℃温度区,石灰石受热分解为氧化钙和二氧化碳,氧化钙与烟气中的二氧化硫反应生成亚硫酸钙。由于反应在气固两相之间进行,受到传质过程的影响,反应速度较慢,吸收剂利用率较低。在尾部增湿活化反应器内,增湿水以雾状喷入,与未反应的氧化钙接触生成氢氧化钙进而与烟气中的二氧化硫反应。当钙硫比控制在2.0——2.5时,系统脱硫率可达到65——80%。由于增湿水的加入使烟气温度下降,一般控制出口烟气温度高于露点温度10——15℃,增湿水由于烟温加热被迅速蒸发,未反应的吸收剂、反应产物呈干燥态随烟气排出,被除尘器收集下来。 该脱硫工艺在芬兰、美国、加拿大、法国等国家得到应用,采用这一脱硫技术的最大单机容量已达30万千瓦。 烟气循环流化床法 烟气循环流化床脱硫工艺由吸收剂制备、吸收塔、脱硫灰再循环、除尘器及控制系统等部分组成。该工艺一般采用干态的消石灰粉作为吸收剂,也可采用其它对二氧化硫有吸收反应能力的干粉或浆液作为吸收剂。 由锅炉排出的未经处理的烟气从吸收塔(即流化床)底部进入。吸收塔底部为一个文丘里装置,烟气流经文丘里管后速度加快,并在此与很细的吸收剂粉末互相混合,颗粒之间、气体与颗粒之间剧烈摩擦,形成流化床,在喷入均匀水雾降低烟温的条件下,吸收剂与烟气中的二氧化硫反应生成CaSO3 和CaSO4。脱硫后携带大量固体颗粒的烟气从吸收塔顶部排出,进入再循环除尘器,被分离出来的颗粒经中间灰仓返回吸收塔,由于固体颗粒反复循环达百次之多,故吸收剂利用率较高。 此工艺所产生的副产物呈干粉状,其化学成分与喷雾干燥法脱硫工艺类似,主要由飞灰、CaSO3、CaSO4和未反应完的吸收剂Ca(OH)2等组成,适合作废矿井回填、道路基础等。 典型的烟气循环流化床脱硫工艺,当燃煤含硫量为2%左右,钙硫比不大于1.3时,脱硫率可达90%以上,排烟温度约70℃。此工艺在国外目前应用在10——20万千瓦等级机组。由于其占地面积少,投资较省,尤其适合于老机组烟气脱硫。 海水脱硫 海水脱硫工艺是利用海水的碱度达到脱除烟气中二氧化硫的一种脱硫方法。在脱硫吸收塔内,大量海水喷淋洗涤进入吸收塔内的燃煤烟气,烟气中的二氧化硫被海水吸收而除去,净化后的烟气经除雾器除雾、经烟气换热器加热后排放。吸收二氧化硫后的海水与大量未脱硫的海水混合后,经曝气池曝气处理,使其中的SO32-被氧化成为稳定的SO42-,并使海水的PH值与COD调整达到排放标准后排放大海。海水脱硫工艺一般适用于靠海边、扩散条件较好、用海水作为冷却水、燃用低硫煤的电厂。海水脱硫工艺在挪威比较广泛用于炼铝厂、炼油厂等工业炉窑的烟气脱硫,先后有20多套脱硫装置投入运行。近几年,海水脱硫工艺在电厂的应用取得了较快的进展。此种工艺最大问题是烟气脱硫后可能产生的重金属沉积和对海洋环境的影响需要长时间的观察才能得出结论,因此在环境质量比较敏感和环保要求较高的区域需慎重考虑。 电子束法 该工艺流程有排烟预除尘、烟气冷却、氨的充入、电子束照射和副产品捕集等工序所组成。锅炉所排出的烟气,经过除尘器的粗滤处理之后进入冷却塔,在冷却塔内喷射冷却水,将烟气冷却到适合于脱硫、脱硝处理的温度(约70℃)。烟气的露点通常约为50℃,被喷射呈雾状的冷却水在冷却塔内完全得到蒸发,因此,不产生废水。通过冷却塔后的烟气流进反应器,在反应器进口处将一定的氨水、压缩空气和软水混合喷入,加入氨的量取决于SOx浓度和NOx浓度,经过电子束照射后,SOx和NOx在自由基作用下生成中间生成物硫酸(H2SO4)和硝酸(HNO3)。然后硫酸和硝酸与共存的氨进行中和反应,生成粉状微粒(硫酸氨(NH4)2SO4与硝酸氨NH4NO3的混合粉体)。这些粉状微粒一部分沉淀到反应器底部,通过输送机排出,其余被副产品除尘器所分离和捕集,经过造粒处理后被送到副产品仓库储藏。净化后的烟气经脱硫风机由烟囱向大气排放。 氨水洗涤法 该脱硫工艺以氨水为吸收剂,副产硫酸铵化肥。锅炉排出的烟气经烟气换热器冷却至90——100℃,进入预洗涤器经洗涤后除去HCI和HF,洗涤后的烟气经过液滴分离器除去水滴进入前置洗涤器中。在前置洗涤器中,氨水自塔顶喷淋洗涤烟气,烟气中的SO2被洗涤吸收除去,经洗涤的烟气排出后经液滴分离器除去携带的水滴,进入脱硫洗涤器。在该洗涤器中烟气进一步被洗涤,经洗涤塔顶的除雾器除去雾滴,进入脱硫洗涤器。再经烟气换热器加热后经烟囱排放。洗涤工艺中产生的浓度约30%的硫酸铵溶液排出洗涤塔,可以送到化肥厂进一步处理或直接作为液体氮肥出售,也可以把这种溶液进一步浓缩蒸发干燥加工成颗粒、晶体或块状化肥出售。 燃烧前脱硫法 燃烧前脱硫就是在煤燃烧前把煤中的硫分脱除掉,燃烧前脱硫技术主要有物理洗选煤法、化学洗选煤法、添加固硫剂、煤的气化和液化、水煤浆技术等。洗选煤是采用物理、化学或生物方式对锅炉使用的原煤进行清洗,将煤中的硫部分除掉,使煤得以净化并生产出不同质量、规格的产品。微生物脱硫技术从本质上讲也是一种化学法,它是把煤粉悬浮在含细菌的气泡液中,细菌产生的酶能促进硫氧化成硫酸盐,从而达到脱硫的目的;微生物脱硫技术目前常用的脱硫细菌有:属硫杆菌的氧化亚铁硫杆菌、氧化硫杆菌、古细菌、热硫化叶菌等。添加固硫剂是指在煤中添加具有固硫作用的物质,并将其制成各种规格的型煤,在燃烧过程中,煤中的含硫化合物与固硫剂反应生成硫酸盐等物质而留在渣中,不会形成SO2。煤的气化,是指用水蒸汽、氧气或空气作氧化剂,在高温下与煤发生化学反应,生成H2、CO、CH4等可燃混合气体(称作煤气)的过程。煤炭液化是将煤转化为清洁的液体燃料(汽油、柴油、航空煤油等)或化工原料的一种先进的洁净煤技术。水煤浆(Coal Water Mixture,简称CWM)是将灰份小于10%,硫份小于0.5%、挥发份高的原料煤,研磨成250——300μm的细煤粉,按65%——70%的煤、30%——35%的水和约1%的添加剂的比例配制而成,水煤浆可以像燃料油一样运输、储存和燃烧,燃烧时水煤浆从喷嘴高速喷出,雾化成50——70μm的雾滴,在预热到600——700℃的炉膛内迅速蒸发,并拌有微爆,煤中挥发分析出而着火,其着火温度比干煤粉还低。 燃烧前脱硫技术中物理洗选煤技术已成熟,应用最广泛、最经济,但只能脱无机硫;生物、化学法脱硫不仅能脱无机硫,也能脱除有机硫,但生产成本昂贵,距工业应用尚有较大距离;煤的气化和液化还有待于进一步研究完善;微生物脱硫技术正在开发;水煤浆是一种新型低污染代油燃料,它既保持了煤炭原有的物理特性,又具有石油一样的流动性和稳定性,被称为液态煤炭产品,市场潜力巨大,目前已具备商业化条件。 煤的燃烧前的脱硫技术尽管还存在着种种问题,但其优点是能同时除去灰分,减轻运输量,减轻锅炉的沾污和磨损,减少电厂灰渣处理量,还可回收部分硫资源。 ● 炉内脱硫 炉内脱硫是在燃烧过程中,向炉内加入固硫剂如CaCO3等,使煤中硫分转化成硫酸盐,随炉渣排除。其基本原理是: CaCO3==高温==CaO+CO2↑ CaO+SO2====CaSO3 2CaSO3+O2====2CaSO4 ⑴ LIMB炉内喷钙技术 早在本世纪60年代末70年代初,炉内喷固硫剂脱硫技术的研究工作已开展,但由于脱硫效率低于10%——30%,既不能与湿法FGD相比,也难以满足高达90%的脱除率要求。一度被冷落。但在1981年美国国家环保局EPA研究了炉内喷钙多段燃烧降低氮氧化物的脱硫技术,简称LIMB,并取得了一些经验。Ca/S在2以上时,用石灰石或消石灰作吸收剂,脱硫率分别可达40%和60%。对燃用中、低含硫量的煤的脱硫来说,只要能满足环保要求,不一定非要求用投资费用很高的烟气脱硫技术。炉内喷钙脱硫工艺简单,投资费用低,特别适用于老厂的改造。 ⑵ LIFAC烟气脱硫工艺 LIFAC工艺即在燃煤锅炉内适当温度区喷射石灰石粉,并在锅炉空气预热器后增设活化反应器,用以脱除烟气中的SO2。芬兰Tampella和ⅣO公司开发的这种脱硫工艺,于1986年首先投入商业运行。LIFAC工艺的脱硫效率一般为60%——85%。 |
ddzhikoi
2019-11-15
|
|
剩下的废固体胶块即为工艺 废渣,主要含有高聚物、DMAc等有机物。 3.9 废气 主要源于纺丝甬道中DMAc蒸发后产生的气体和燃烧产生的气体,经一系列处理后排放到大气中。 ... ---摘自《附件 8》
|
xiaoshou
2024-05-22
|
|
环保对策措施 5.1 施工期废气处理控制对策措施 (1)防尘、抑尘对策措施 ①合理安排施工作业,在大风天气避免进行场地开挖、搅拌等容易产生扬尘的施工作业。 ②施工期间,施... ---摘自《环保对策措施》
|
kr9梯
2024-02-20
|
|
烟气脱硫是减少工业燃煤锅炉二氧化硫排放的有效方法。 当前燃煤电厂所采 用的脱硫工艺多种多样, 这些应用较为成熟的烟气脱硫工艺都有各自的特点和适 用性。 随着烟气脱硫设... ---摘自《四川省燃煤锅炉烟气脱硫除尘治理项目》
|
笨蛋爱傻瓜悦
2023-11-21
|
|
8台锅炉烟气处理设施均按建设时的环保要求配套建设,按照目前的环保要求,已不能实现烟气的稳定达标排放,2017年被自治区列为重点督查对象并要求限期完成提标改造。因此... ---摘自《隆德县城集中供热燃煤锅炉烟气治理节能改造项目》
|
丑伊
2023-08-21
|
|
在引进新工艺、延伸产业链的 同时,还大大的减少了污染物的排放,对环境治理作出了很大的贡献。 结合本工程运营期排污特点及周围环境特征,在工程分析基础上,将废气、 ... ---摘自《0 前言 》
|
865397499
2023-05-21
|
|
锅炉烟气流向及处理工艺流程见图 1、图2。 图1锅炉烟气流向图 锅炉布袋除尘脱硫装置锅炉布袋除尘脱硝系统脱硝系统烟囱湿电除尘注:二、三、四期有湿电除尘器 图2锅炉烟气处... ---摘自《南纤公司烟气、废水主要治理设施》
|
哎呦为公主坟
2023-02-19
|
|
锅炉烟气 1套 冲击水浴除尘器 工艺废气处理装置 1套 工艺废气经集气罩收集后汇入车间废气处理总管经碱喷淋净化处理 固废分类收集、暂存设施 / 一般固废贮存:50m2 。 危险废... ---摘自《1 前言》
|
You—灰機
2022-11-19
|
|
公用单元主要工艺包括物料存储系统、输送系统、纯水制备系统、循环水冷却系统、供 热系统、空压系统、供冷系统、废水处理系统、废气处理系统、固废处理处置系统、事故应 ... ---摘自《中华人民共和国国家环境保护标准》
|
摇摆白勺白芍
2022-08-19
|
|
垃圾焚烧锅炉烟气脱硫废水混凝处理研究 垃圾焚烧技术是针对生活垃圾、工业垃圾等垃圾的一种全新处理工艺,可以借助焚烧炉将垃圾进行加温脱水来使垃 圾中的有机物氧化,最... ---摘自《垃圾焚烧锅炉烟气脱硫废水混凝处理研究》
|
丶蓶一
2022-05-20
|
|
1#、2#、3#、4#共四套锅炉烟气脱硝装置 设计生产能力 每套装置烟气处理能力为18万m3/h,共四套 实际生产能力 每套装置烟气处理能力为18万m3/h,共四套 环评时间 2015年6... ---摘自《2015100199U》
|
ddzhikoi
2022-02-17
|
|
废气治理 锅炉烟气处理、油烟净化器等(已建成) ,根据本次环评要求将锅炉改造 成生物质颗粒燃料锅炉,进行除尘处理,淘汰 2 个燃煤大灶。 噪声治理 采取减振、隔声处理(... ---摘自《一、 建设项目基本情况》
|
hys520855
2021-11-17
|
|
单台烟化炉炉床面积不得低于4平方米,同时应配备有余热锅炉或其他余热利用设备,回收利用高温烟气余热。烟气制酸严禁采用干法净化和热酸洗涤技术工艺。 以电炉处理含锡二... ---摘自《附件:》
|
静看花开花落
2021-08-17
|
|
项目以废纸作为原料生产纱管纸,产生造纸废水、锅炉废气。因此项目选址是否合理,是否有制约项目建设的因素,生产废水和废气处理工艺是否可行,固体废物处置措施是否合理... ---摘自《前言》
|
qksr
2021-05-18
|
|
陶瓷工业典型生产工艺.35 5.2 陶瓷工业废气的产生和特征.35 5.3 陶瓷工业废气治理工程技术.39 5.4 国外陶瓷工业废气治理情况.41 5.5 国内陶瓷工业废气治理工程案例分析.43 6 主... ---摘自《附件 3》
|
阿拉蕾
2021-02-15
|
|
锅炉烟气除尘、酸雾吸收塔、 污水处理站等环保设施。 通过公司的不断努力,2017 年3月县委常委、常务副县长组织相关部门召开县 长办公会议,专题研究湖南金源新材料股份有... ---摘自《环境影响报告书》
|
f19970615123fa
2020-11-15
|
|
建设项目工程分析.13 4.1 原有项目生产工艺流程.13 4.2 扩建项目主要工艺流程.18 4.3 项目变更情况.22 5.建设项目污染物排放情况及环保设施概况.23 5.1 废水.23 5.2 废气.23 5.3 噪... ---摘自《建设项目竣工环境保护》
|
sunny爹
2020-08-16
|
|
有生产车间、污水处理站、锅炉房(设有 25t/h 燃煤锅炉一台)和办公楼。于2005 年11 月7日取得环评验收批复 (穗环南管验[2005]2 号, 见附件) , 并取得排污许可证 (许 可证... ---摘自《建设项目环境影响报告表》
|
ok2015
2020-05-16
|
|
余热锅炉化学水处理车间排 出的酸碱废水,余热锅炉排污水。 湿法炼铜堆浸场地、溶液池及尾矿池渗漏液,或上述场地由于大暴雨或溃坝事故引起的泄漏液。 铜冶炼过程中主要水... ---摘自《附件 1》
|
笨蛋爱傻瓜悦
2020-02-14
|
|
(10)《固体废物处理处置工程技术导则》(HJ2035-2013); (11)《环境噪声与振动控制工程技术导则》(HJ2034-2013); (12)《工业锅炉及炉窑湿法烟气脱硫工程技术规范》(HJ462-2009... ---摘自《概述》
|
笔墨随风
2019-11-15
|
|
燃煤锅炉烟气汞的处理工艺研究 随着社会的不断发展和进步,电力需求和供应与日俱增,使燃煤锅炉烟气汞的处理研究变得越来越重要。本文主要 以燃煤锅炉烟气汞的处理工艺为... ---摘自《燃煤锅炉烟气汞的处理工艺研究》
|
南门路口
2019-08-15
|