编辑: 5天午托 | 2017-08-31 |
s decomposition for di?usions associated with semi-Dirichlet forms[J]. Stocha. Dyn., 2012, 12(4):
1250003 (PP.1C31). [6] Albeverio S, Ma Z M. Additive functionals, nowhere Radon and Kato class smooth measures asso- ciated with Dirichlet forms[J]. Osaka J. Math., 1992, 29: 247C265. [7] Takeda M, Tawara Y. A large deviation principle for symmetric Markov processes normalized by Feynman-Kac functionals[J]. Osaka. J. Math., 2013, 50: 287C307. [8] Leva G D, Kim D, Kuwae K. Lp -independence of spectral bounds of Feynman-Kac semigroups by continuous additive functionals[J]. J. Funct. Anal., 2010, 259: 690C730. [9] Chen Z Q, Fitzsimmons P J, Kuwae K, Zhang T S. On general perturbations of symmetric Markov processes[J]. J. Math. Pures. Appl., 2009, 92: 363C374. [10] Chen C Z. A note on perturbation of non-symmetric Dirichlet forms by signed smooth measures[J]. Acta Math. Sci., 2007,
27 (1): 219C224. [11] 韩新方, 马丽, 杨雪. 广义狄氏型的符号光滑测度扰动及其结合的马氏过程 [J]. 数学物理学报, 2010, 30A(3): 623C629. [12] 王玮, 韩新方, 马丽. 半狄氏型的符号光滑测度扰动 [J]. 北京交通大学学报, 2015, 39(6): 126C130. [13] Kuwae K, Takahashi M. Kato class measures of symmetric Markov process under heat estimates[J]. J. Funct. Anal., 2007, 25: 86C113. [14] Albeverio S, Fan R Z, R ckner M, Stannat W. A remark on coercive forms and associated semi- groups[J]. Part. Di?. Oper. Math. Phys., Oper. The. Adv. Appl., 1995, 78: 1C8. [15] Ma Z M, Overbeck L, R ckner M. Markov processes associated with semi-Dirichlet forms[J]. Osaka J. Math., 1995, 32: 97C119. [16] Hu Z C, Sun W. Balayage of semi-Dirichlet forms[J]. Canadian J. Math., 2012, 64(4): 869C891. [17] Vondracek Z. An estimate for the -norm of a quasi continuous function with respect to a smooth measure[J]. Arch. Math., 1991, 67: 408C414. [18] Fitzsimmons P J. On the quasi-regularity of semi-Dirichlet forms[J]. Potential Anal., 2001, 15: 158C185. [19] Chen Z Q, Song R M. Conditional gauge theorem for non-local Feynman-Kac transforms[J]. Prob. The. Relat. Fiel., 2003, 125: 45C72.
130 数学杂志Vol.
38 [20] Han X F, Ma Z M, Sun W. h-transforms of preserving semigroups and associated processes[J]. Acta Mathematica Sinica, English Series, 2011, 27(2): 1C8. KATO CLASS SMOOTH MEASURES OF SEMI-DIRICHLET FORMS MA Li, HAN Xi........